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Abstract

Zika virus disease is a flavivirus disease transmitted among humans through the bites of infectious Aedes aegypti
mosquitoes, through blood transfusions, during sexual intercourse, and during pregnancy. A novel model that
incorporates treatment and utilization of Sterile-insect technique as control measures is proposed. This model
incorporates the occurrence of asymptomatic cases in the midst of the controls unlike in previous studied considered.
Stability analyses show that the zika-free equilibrium point is locally and globally asymptotically stable when the zika
control number, R_, is less than one, and unstable otherwise. A bifurcation analysis was conducted, leveraging the center
manifold theorem to ascertain the conditions for stability of the endemic equilibrium point. The effects of the controls
considered are demonstrated through the presentation of plots. The findings indicated that the combination of both
measures yielded superior outcomes in comparison to the utilization of the controls individually. MATLAB was used
for the simulation and plots.
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1. Introduction

Zika virus disease is a zoonotic disease transmitted amongst humans by infectious Aedes aegypti mosquitoes, during
pregnancy, blood transfusion and through sex [1,2]. It was first discovered in 1947 in Uganda [1] while the first human
cases were reported in 1954 in Nigeria [3]. Common symptoms include headache, maculopapular rash, mild fever,
muscle and joint pain, malaise, arthralgia, and conjunctivitis [4,5]. Zika virus disease became a global concern after the
first reported infection in pregnant women [6]. Zika infection during pregnancy causes congenital abnormalities of the
brain which microcephaly is inclusive [7]. Zika virus also triggers the Guillain-Barre syndrome [8,9]. A report from
WHO [10] suggests that information over certain diseases like zika virus disease seem to have been impaired with the
onset of COVID-19 pandemic. Zika virus disease has 80% of the cases occurring as asymptomatic and an unclear
pathogenesis [11]. Zika virus disease is a zoonosis because non-human primates are reservoirs while humans are
incidental hosts [12,13].

The sterile insect technology (SIT) is a pest and insect control mechanism where a large number of sterile males are
released to mate with the females in the wild [14,15]. When a sterile male mates with a female, the female can conceive,
lay eggs without hatching them [16,17]. SIT was used in northern Mexico to eliminate the Mexican fruit fly and it was
used to eliminate tsetse fly in 1997 from Zanzibar [18] and in 2014 from Senegal [19]. Presently, SIT is targeted at
eradicating different species of mosquito causing various illnesses [20].

There are many literatures on modelling of zika virus disease such as Andayani et al. [21] who worked on the behaviour
of zika virus disease transmission with Beddington-DeAngelis incidence rate in order to determine the endemic
conditions of the disease and recovery time. In the research of Olaniyi et al. [22], nonlinear models for the transmission
of zika virus disease was formulated. The models incorporated infected mosquitoes, asymptomatic and symptomatic
humans. They did the sensitivity analysis to identify the intervention strategies for the disease. Gonzalez-Parra et al. [23]
explored two control strategies to help decrease the spread of the virus in the human and vector populations. They
analysed their results with real data obtained from Colombia. SIT was employed to reduce the vector population of the
disease and they discovered that introduction of more sterile males into the wild will reduce the population of the
mosquitoes with time by Atokolo and Mbah Christopher Ezike [16]. Alshehri and El Hajji [24] worked on a
mathematical model for zika virus disease with nonlinear incidence rate. Optimal control analysis using Pontryagin
maximum principle was performed to reduce the number of infected humans. They also used a numerical scheme to
obtain approximate solution of the system. Alfwzan et al. [25] developed a mathematical model for Zika virus disease
which was analysed both numerically and dynamically. Nonstandard numerical methods are employed to check the
stability and consistency of solutions. The numerical schemes preserved the behaviour and properties of the model.
Ibrahim and Dénes [26] proposed a model for Zika virus disease incorporating mother-to-child and sexual transmission.
The model also included a compartment for infants with microcephaly and also showed the impart of asymptomatic
humans, seasonality and infection by sexual transmission. They analysed the model considering constant and variable
time. Wang et al. [27] worked on a zika virus disease model with transmission by sexual contacts, mosquito bites and
sewage. The model was fitted with data from Brazil between 2015-2016. Mosquito bites accounted for large effect of
endemicity, followed by transmission through sex and then sewage. Temperature and multiple transmission increased
the prevalence of the disease in Brazil as shown in their work. Kouidere et al. [28] proposed a fractional derivative
model for an optimal control problem of zika virus disease. Sensitization program against the disease and treatment was
employed as controls and it was shown through numerical simulations, how the proposed controls were effective in
controlling the spread of the disease. Helikumi et al. [29] developed an optimal control model of zika virus disease
incorporating health education campaigns, use of insecticides and preventive measures as controls. Their work showed
that the fractional-order model fitted better than the classical integer-order model. The simulation results were seen to
justify the use of the controls suggested.

In all the literatures considered, only Atokolo and Mbah Christopher Ezike [16] employed use of sterile insect technique
in their modelling analysis. Some researches employed any or combination of treatment, human protection against
sexual transmission and mosquito bites as well as destruction of mosquito breeding site as controls. They showed how
the controls can reduce the population of mosquitoes [3,21-23,25,27,28]. However, we went further in this new model
to show that by controlling the population of mosquitoes as done by Atokolo and Mbah Christopher Ezike [16], the
spread of the disease will be controlled. In this work, transmission model for Zika that incorporates the use of SIT and
treatment are studied. The model also incorporated occurrence of asymptomatic cases which is one of the major
concerns of the disease. The rest of the work is arranged thus; the model describing the disease dynamics, the Zika-free
equilibrium point and the basic reproduction number are presented in Section 2; Stability analysis is investigated in
Section 3; while in Section 4, numerical simulation is performed and conclusion in Section 5.

2. Mathematical Model
The mathematical model for zika virus disease is made up of six compartments for human population; Susceptible
humans S, Exposed humans E},, Symptomatic infectious humans /7,5, Asymptomatic infectious humans 7,4, Infectious

humans undergoing treatment /.7, and Recovered humans R, and four compartments for mosquito population;
Susceptible mosquitoes S.,, Exposed mosquitoes E,,, Infectious Mosquitoes 7., and the Sterile male mosquitoes, Ig7.
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The susceptible human population, S}, is increased by level of recruitment through births and migration and reduced by
the rate of movement into the exposed class. The Exposed human population, Ej, is increased as more susceptible
humans become infected and reduced through by the rate of development of infectiousness. The Symptomatic infectious
human population, /¢ is populated by infectious humans who manifest symptoms of the disease while the aymptomatic
infectious human population, /., is populated by those who do not show any sign of the disease. All the human
compartments accounts for natural death while some infectious humans either die naturally or from the disease. Also,
some infectious either undergo treatment and recovers while some recover naturally. The susceptible mosquito
population, S,, is increased by the level of recruitment and reduced by rate of exposure to the disease and reduction by
interaction with sterile males. The SIT mosquitoes are recruited at a rate A, with natural death rate, x,. The parameter p
represents the proportion of sterile males that will successfully join wild mosquito population [16]. Also, the parameter
q accounts for mating competitiveness between SIT mosquitoes and the male Aedes mosquitoes in the environment.
The parameter values used for the numerical analysis and simulation were taken from existing literatures such as World
health Organization reports, Centre for Disease Protection and Control reports and other literatures from previous
modelling analysis. All parameter sources have been properly cited in Table 1 while Figure 1 describes the disease
transmission dynamics.

Table 1. Parameters, values and sources.

Parameters Description Values Ref.

Ay Human recruitment rate 50 Assumed
A, Mosquito recruitment rate 100 Assumed
7 Natural death rate of humans 0.00004 [1]

7 Disease-induced death rate 0.0003 Assumed
U Natural death rate of mosquitoes 0.0556 [2]

a Biting rate of mosquitoes 0.4 [30]

m Probability of transmission from 7., to S, 0.0009 [1]

7o Probability of transmission from /g to S, 0.07 [1]

73 Probability of transmission from /.4 to S, 0.07 [1]

n Probability of transmission from /.7 to S, 0.05 [31]

0y Incubation rate in humans 0.3333 [2]

v Incubation rate in mosquitoes 0.1111 2]

x Proportion of infectious humans who are symptomatic 0.31 [31]

10 Proportion of infectious humans who are asymptomatic 0.62 [31]

Wy Rate at which /g recovers naturally 0.1429 [21]

Wy Rate at which /.7 recovers 0.1667 [1]

w3 Rate at which 1,4 recover 0.118 [2,30]

K Mating rate of SIT mosquitoes with Aedes mosquitoes 0.25 [31]

7 Rate at which symptomatic infectious humans accept treatment 0.85 [30]

Ay Ty T T, + 13 Ty

”

Figure 1. Disease transmission flow.

GIM, Vol. 2, No. 1, January 2026 https://gim.cultechpub.com/gim



44 Duru et al.

The model describing the system is:

_=Ah _(ar/llzv+71 )Sha

dE
—E=on LSy (422541 ) Ene,

dly.s

o o En—(mtntyto) s,

dlyzy
dt

dlyr _
o Vs~ (@t tgto) hr,

=0y B~ (114734 03) 24,

dRy _
o " Otlhzstoslortosl T Ry, (&)

ds;,

7; =sz_a (’721th+’731th +’74IhzT)Szv_ (K[SIT+1“)SZV 5
dE,,

=ttt b g alhr) Soy = (VO E,

dr,

“ar =vE,,~ul,,

dI
= PaNs—Lsir,

dr

where
Sh(0)=80 Ep(0)=ER.. Irs(0)=Iys, Tza(0Y=L s Inp(0)=L s Ry(0)=RY, S (0)=S5,, E.(0Y=ED,, Ly(0)=I%,, Isyr(0)=I3;  are
the initial conditions for Equation (1).

The solution to Equation (1) lies in the invariant region Q=0 xQ,*xQ; where
A
Q= {(Sh,Ethhszth JnzrRy) ERS INhSTlh} , 2
and

A,

ZV
U

}» Q3= {ISITE Ry ISITSPZ\S} , (3)

Q2: {(SzvaEzvaIzv) € R;’F :szs
respectively.
2.1 Well-Posedness, Positivity and Boundedness of Solutions

Lemma 1. The solution set {Sy,(?), Ep.(%), Th5(2), Inza(D), Lor(0),RL (0, So(0), E.(0),L,(¢),Isp(£)} of Equation (1) with the
initial conditions will remain positive V £>0.

Proof.

From Equation (1) we have that

dSt
7;2* (an L, +11)Sh,

dEp,
7;2* (0(1*%2)5"‘71)5123

dlsir >

—udgrr.
it MsdsiT

By integration, we have
Shi S‘}ie{_j((lﬂllzv+rl)dt}>0’

Ehzz Egze{_"(()(1+)(2)‘5+71 )d[}>0’

Ly Lyret >0,
This shows that the solution to (1) remains positive V' ¢> 0.
Lemma 2. The region Q is positively invariant and is an attractor of all positive solution to the system.

Proof.

The total human and mosquito populations satisfy the differential equations:
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dNy _
= MmNy (Uest et ),

dN., _
7 Zv ‘u]zva (4)

di.
;t[ L=pg Al

respectively.

ZV—

By Integration, 0< Nh<— 0<N, <tz } and O<IS,T< 24l os t—se0. Thus, all solutions of Equation (1) are positive and

bounded. Lemmas 1 and 2 shows that the model is well posed epidemiogically, hence can be analysed.
2.2 The Zika Control Number

The disease-free equilibrium point (DFE) of the system which is the steady state of Equation (1) when there is no zika
viral infection in the system is given by

ZO:(SO’EO’Ing’Ing’Ing’Rg’S(Z)VBE(Z)VBIBV’IgIT) ( 00000 _VOOO)

The zika control number is a threshold used to measure the average number of new zika infections that will be caused
by one index case in an entirely susceptible population. It is denoted in this work by R, and is derived using the Next-
generation matrix approach given in [32,33]. If the zika control number, Ry<1 it means that an infected person produces
an average of less than one infection, hence the disease will die out from the population with time. The disease class for
the system Equation (1) corresponds to;

ﬂ =0 LySy—(Ga142) 471 ) Enz

dlm =01 Ep—(r1 00 tyto s,

dlyzy
= =00k (it w) ey,

di
L =yhy.s— (11412 +©2) b, )
d ZV

7:a(ﬂ2]th+’73]th+’74]hzT)Szv_(V+,U)Ezv»

dl,
7? =VE,,~ul,.

Let & be the appearance of new infection in Equation (5) and ¥ denote movement into and out of the compartments
represented by Equation (5) through any other means, then

o 1Sy (Catx)dtm)Ey,
0 =01 B+ (ot rytpt o)) g
I= 0 and V= =0y, By +(r1+ 0yt 3) Iy
0 (HE,
(o lhest 3z Madher) Sy —VvE, +ul,
0 0 0 0 0 C D o 0 o0 o0 O
00 0 0 0 0 o D 00 0 0
7 |00 0 0 0 0 0 0 Dy 0 0 0
Thus, F_aY 0O 0 0 0 0 0 and V 0O —w 0 D, 0 of
0 G C C 0 0 0 0 0 0 Ds O
0O 0 0 0 0 O 0 0 0 0 -v u
where Cl mnA C3—a’73A C4:M4TAZV, DIZ(){1+X2)5+T1, D2:T1+T2+l//+a)1 . D3:T1+T2+CU3, D4:T1+T2+602,
Ds=v+u. The elgenvalues of the Next Generation Matrix, FV! is
_ 0 -
0
0
0
|FV-1-a1|= 1

(C 1v0(Cox1D3D4+C3x2D2Dy+Cayy WDa))E
uD1D2D3D4Ds

1
7(C 1¥9(Cax1D3D4+CaxaDaDy+Cayy leg))E
L uD1DyD3D4Ds
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The zika control number is the dominant eigenvalue of |FV'=AI| and is given by

1
R :(Cl v3(Cox1D3Ds+C3xa D) DatCayy WD3))E (6)
z uD\D2D3D4Ds ’

C1voCoyi . . . . . . .
l;vD zg Lin R, gives the total expected infections at the DFE point by one symptomatic infectious human,
HO1D205

gives the total expected infections at the DFE point by one asymptomatic infectious human while

The proportion,
C1v3Cypn
uD1D3Ds
gives the total expected infections at the DFE point by one infectious human undergoing treatment.

C1voCap1y
uD1D2D4Ds

3. Analysis of Equilibria

3.1 Local Stability of the Disease-Free Equilibrium Point

Theorem 1. The disease-free equilibrium point is locally asymptotically stable (LAS) if R,<1 and unstable if otherwise.
Proof.

To determine the nature of the stability of the DFE point, the system, Equation (1) is linearized around the DFE point,
Z° to obtain the eigenvalues of the system. If all the eigenvalues are negative then, the DFE point is LAS, otherwise it is
unstable.

Let the right-hand side of Equation (1) be denoted as
Sfi=An —(om Ly 11) S,
fr=om L,Sy—(Ga+)0+11) Er,
[=00 En—(mitoatyto ) s,
S0 En— (1t o3) -y,
Ss=yhas—(nittto) I, (7
Je=w1lostorlrt @3l 4T1 Ry,
SN0 dhes 3 Iz atialnr) Sy (elsirt ) Sy,
Ss=a(nalnzst i3z atialnr) S~ (VD E.,,
Jo=VE.,—ul,,
Sio=prass—udgr,
The Jacobian, J of Equation (7) evaluated at the DFE point, Z° is given by

—, 0 0 0 0 0 0 0 -C 0]
0O -D, 0 0 0 0 0 0 C 0
0 o -D, 0 0 0 0 0 0 0
0 & O -Dy 0 0 0 0 0 0
0 0 w 0 -Db 0 0 0 0 0
JZ=lo 0 o w3 @ - 0 0 0 0]
0 0 -G -G —C, 0 —u 0 0 2
0 0 ¢ ¢ ¢ 0 0 -Ds 0 0
o 0 0 0 0 0 0 v -u 0
(o 0 o o0 0 0 0 0 0 —u

where all the Cis and Djs are same as in Section 2.2. The eigenvalues of the Jacobian matrix, J(Z°) corresponds to these
diagonal elements, (—7,, —7;, —u, —,) which are all negative and the eigenvalues of the Jacobian submatrix, J;(Z°) given
by

D, 0 0 0 0 ¢

X15 _D2 0 0 0 0

_ ){25 0 _D3 0 0 0
N@=" 0 -D, 0 0
O C2 C3 C4 _D5 0

0 0 0 0 v u

The Jacobian submatrix is derived by deleting any column with one entry with its corresponding row. The eigenvalues
of the Jacobian submatrix correspond to the root of its characteristic polynomial given by

P(A)=002+01 23 +0,4 4 033+ 042+050+ O (®)
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where

Oo=1,

0,=D,+D,+D3+D4+Ds+u,

0r=D\(DytD3+Dy+Ds)+Dy (D3 +Dy+Ds)+D3(DytDs)+DsDs+u(D1+Dy+D3+Dy+Ds),

03=D\Dy(D3+Dy+Ds)+DD3(Dy+Ds)+DDsDs+DyD3(Dy+Ds)+uD; Dy
+D4D5(Dy+D3)+uDy (Dy+D3+Dy+Ds)+uDs(D3+D g ) +uDy (D3 +Dy+Ds)

04=1D(D,D3+ Dy Dy+D3Dy+DyDs)+1uDy(D3Dy+D3Ds+DyDs)+ D3 Dy Ds

C1vd(C3x2D2D4+Cox1D3Dy)
DyDs3

+DDy(D3D4+D+Ds+DyDs)+DD3D,Ds+

C1vdCay1y(D2+D3)

+D,D3DyDs+ +uDy D, Ds[1-RZ]+uD) D3 Ds[1-RZ],

D, DD, Ds[1-R2]

Os=D D3 Dyl Dy +uDs D D+ AP

C1vd(C3x2D2D4D4+Cay1$D3D3)
D3D4Ds

Q=D D,D3D4Ds[1-R2].

+ +uD D, DyDs[1-R2]+uD, D,D3 Ds[1-RZ],

Applying Descartes rules of signs [34], we will see that there will be no sign changes in our polynomial if R.<1 and if
there are no sign changes, then all the roots of the polynomial which corresponds to the eigenvalues of the Jacobian
submatrix, J; will be negative. Thus, the DFE of Equation (1) will be LAS if R.<1. Therefore, the DFE point of the
system (1) is LAS when R.<I.

3.2 Global Stability of the Disease-Free Equilibrium Point

Theorem 2. Consider the system of differential equations
d
= =Fi(x0). ©)
L=F>(X,1).F5(X.0)=0, (10)

where Equation (9) is the sub-system of Equation (1), satisfied by non-disease class, X=(S},,R},S.,.L;7) and Equation (10)
is the sub-system of Equation (1) satisfied by the disease class, Y=(Ey..ln.s.lhzn>lho1sExvly). The DFE, Z° is globally
asymptotically stable (GAS) if Equation (9) is GAS, and if in (10), BX,—F,(X,Y)>0, where B is the Jacobian matrix of
J1(X,Y), evaluated at Z° and F,(X,Y) is the right-hand side of the system associated with the disease class.

Proof.

From the system Equation (1), solving the differential equations of X=(S},,R},,S.,,Is;7) at the DFE point gives
— ﬂ _ ﬂ Tt
Sh_rl-"_(s?1 rl)e "

Ry=R)e ™™,

=sz _ﬁ Tl
So= (-2 e, (1n

_ P4 PAAS\ 1yt
Isr=5= V+(1§,T— p )e a,
S

As t—oo, we will have S;— %, R,—0, S,,— % and / SIT—>pz—A°' respectively which are the values of (S,,Ry,,S.,.[s7) at the
1 s
DFE point.

Also, the matrix B is given by

D, 0 0 0 0
X1 o 7D2 0 0 0
B= Xzé 0 -D 3 0 0
0 w 0 -D 0
0 ¢ G C -Ds
0 0 0 0 v

Toocoocol
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an, (Iz_lh _Sh) L,

0
0
0

La (% _Szv) (D2 hhzs i3z atalher)
0

and BXz_Fz (Xv, Y'):

It is obvious to see that S}, (t)<— and Szv(t)< . Hence, we are certain of non-negativity of all the rows in the matrix
showing that BX,—F,(X,Y)>0 is satlsﬁed. Hence, the DFE point is GAS.

3.3 Endemic Equilibrium Point of the System

The Zika endemic equilibrium point, (ZEEP) of the system is the state where zika virus disease persist in the system. At

ES .
the ZEEP denoted in this work by Z* (f thﬂ L, IhzT, Rh , va, EZV, Izv, 1 SIT)\), the state variables are expressed
in the form;
* ok Lk Lk * s 5 5
G =M * _ amly Sy ko _ ok kOl I = ey R _ Oty grooly grosh,
b am L, +1 ’ bz Gatorn hzS ooty hzd ity 0 [ . T h 7 >
sz

N

v * * *
“(’72’ms+’73’1uA+’74’mT) ("’sz ﬂ)

% % %
Eo= @ (’721hzs+’731th+’741hzT) /= VES, 41 =Pahs
v vu s dzv T u an SIT

0=A, — <0“711jv +Tl) Sh

0:0“711;5; _((X1+X2)5+T1)E* ,
0:5X1E;*(T1+T2+1//+601)1;:2 ,
0:5X2E:Z_(Tl+72+603)1:2 )

0=yl sttty g,

O=o,I_ctanly_+wsl, R,

0=A.,~a (’72[ 5131y +’74[hzr) S ( sirTH )ka 2
0=a (sl nadh.r) St ~(rES,
0=vE,, ~uL,,

>k
0= pgAy—usl, SIT>
Thus, substituting expressions for these state variables:

*

( th, L, IhzT, R SZV, EZV, IZV, IS,T) into E:Z where applicable yields

H\E. *+H,E;. =0 (12)

where H,= [% +’%ﬁll)5] R? and H,=A,, [Kp Z:\“ +,u(1—Rf)] respectively.

The trivial solution E:Z =0 gives the disease-free equilibrium point already proven to be locally and globally
asymptotically stable when R,<I1. Applying Descartes rules of signs in Equation (12), we will see that there will be no
sign changes in our polynomial if R,<I and if there are no sign changes, then all roots of Equation (12) will be negative.
But there is a possibility of obtaining a positive root from Equation (12) if R,>1 and H,<0. Hence, a unique endemic
equilibrium is guaranteed to exist only when R >1.

3.4 Bifurcation Analysis

The method of Castillo-Chavez and Song [35] based on the Center manifold theorem is used to carry out bifurcation
analysis to determine if the zika-endemic equilibrium point is LAS or not. From the theorem [35], given
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3%(0,0)

= 550.0)

q {k,iJ}vkle-/ oyi0y; ’
n 2£0.0)

r= VW, .
ki kT oy;iOy

then, if g<0 and >0, then a forward bifurcation occurs at =0 and if g >0, >0, a backward bifurcation occurs at y=0.

Proof.

Let in be the bifurcation parameter, then R,=1 implies that

_ a1 Anvd(Cox1D3Dy +C3x0 Dy Dyt Cay1yD3)
114D1D2D3D4D5 ’

1

Setting ;71=;7T and making it the subject of the formula, we will have

* T11D1D2D3D4Ds
g alpvd(Cox1D3D4 +CaxaDaDa+Cay1yD3)

Let J(Zo,iflk )\) be the Jacobian matrix of j’(x,iflk ) at the zika-free equilibrium Z°. The matrix J(Z° ,nT ) possesses a zero
eigenvalue, while the remaining eigenvalues have negative real part. Therefore, J(ZO,nT ) is non-hyperbolic, and [35]

can be applied to analyze the dynamics of the model around the bifurcation parameter nT . The right
eigenvector w=(w;,wy,ws,...,w;o)” and the left eigenvector v=(v|,v,.v3,...,v;9)7 corresponding to the zero eigenvalues

satisfy the systems J (ZO ,17? ) w=0 and vJ(Z° ,17? )=0.
Here, the Jacobian matrix J (ZO ,nT ) and J(Z°) are only different in CT where #; is replaced with nT . So, we will have

7T16017C'T g

*DlwfrCT Wy
De¢w,=D, w5
D70,=Ds 0y

J(ZO,nT ) w= yws—Dyos =0.

WICU3+W2605+W3CU47T1606

KAzy010

14
Cya3+C04+Cams—Dswy
Vg—UWg
“Hs@10

Taking w,=1>0 so that the other terms can be easily obtained in terms of w, as follows:

—Cr03=Cy04=Cy5— w7~

p— Diwy Wa= Dgwy _ _ Dywy _yDewy _ (@1D3D4D6twryD3Detw3t1DrDaD7IW)
1 7’ 3 Dy’ 4 Dy’ 5 DyDy° 6 11D2DDy 5
__ (C3D3D4De+CayD3De+C3D2D4D7) W _uDiwy _Diwy _
- wg= > W9__*3 WIO_O‘

7 uDyD3Dy 8 C’l‘ v 5

Using the Jacobian matrix, J (Zo,iﬁ ) and the vector v, then

Vi
_V2D1 +V3D6+V4D7

WDy tvsytvem—v7 Gty Gy

V4 D3tvs03—v;C3 v Gy

7V5D4+V66027V7C4+V8 C4

* —
vJ (Zo,nl ) = V6T =0.
“Vir
_V8D5+V9V

_quk "‘Vchk Vol

_vikAgy

P “VioMs

The result of the product v.J (ZO ,I7>1k ) taking v,=1>0 so that the other terms can be easily obtained in terms of v, is given

as follows;
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VQVCT (C4+Dyg) vva’;< C3 v2vC>1k Cy vzvcai< VZCT
= = = Vo= :

uDsDs  * 4 uDsDs 0 ubDaDs S ups P04

Vi=Ve=v;=V10=0, v;=

We make these useful notations; Sy=y1, En-=V2, In-s=3s Ihea=Vas Ior=yss Ru=Ve, S2=v7, Eo=ys, L, =y9 and Igr=yy,. for
ease of identification. Also, let

[ fi ] A —(anyotty)y, ]

S 0”]1}’9}’1*((Xlﬂ(z)SJle)}’2

Ve dpy: — (it tyto))y;

Ja 3xay2 — (T tT3t@3)y,

55 Vys—(1+14+0,)ys

Jo 01Y3T0Y5T03Y47T1 Y6

I | An—e(ayssystaya)yr—(yiot)ys

Js a(2y3t3ys+tnays)y;—(vi)ys

Jo Vys—HY9

ol | PAA Y10 ]
Thus, we will have

2fi x 0% x  O0%f 821 2f
5}’12;9 — 5}’9/9;1 “h 3}’7/;’3 S 3,V7g’4 IR 3,V7J¢;,7VS =)\l
R 2R PR P *h
ay30y7 ~H2 2704 — s Ay70ys ~ 4 oo =0l avodn| -

The summations for ¢ with v and w now becomes

30,0 3*£(0,0
=y " ZEOO L ERO0
[ J Oyiyj y J Oyiyj
2 2 2 .
°£(0,0) ) TR0 7500 P£(0,0)

=2v, W W +2vgwyw VeWo W, Wow
2P0 o100 83T dysa 8T8 o104 875 apaps
_ ZD%w%vz(mT 72D6W%w2a112CT Dle 72D7W%vv2CT a;74D1R§ 721//D6W%vv2CT a113D1R§

u c’l‘ uC1Dy uC1D3 u#C1D2Dy

Since all the parameters in g are all positive, then g<0. We then proceed to find r.
Similarly, the summations for » now becomes

22£1(0,0 2£5(0,0
=v ;.1Wl~ fl( - )+V2 ;.1Wl~ fz( - ) )
Oyion, Oyiony
From the values of v;s, v{=0. Therefore, » becomes
va 1w 02£(0,0)
Vz—* .
0yion,

Hence, we will have

3*£(0,0 3*£(0,0 Dywyay D
£( *)Jrv Wo £( *):7 v2Diwaayg | vaDiwaayi

r=v,w; P
oy10m, Sy90n, g C

*
v Diwra [ym—ngl ]
- %
711C4

The parameter, >0 if ylrl>ng>1k . Thus, the system given by Equation (1) will experience forward bifurcation if >0

since ¢<0. If r30\), then backward bifurcation occurs in the system. Therefore, the zika endemic equilibrium will be
LAS if 7>0 and unstable if otherwise.

3.5 Global Stability of Zika Endemic Equilibrium Point

The method of Lyapunov given in the works of [36,37] is used to check if the zika endemic equilibrium point is
globally asymptotically stable or not. Lyapunov methods are robust, general and can handle complex systems, hence,
more suitable for nonlinear and continuous systems. Consider a Lyapunov function of the form;

V=3 ¥, (13)
where Y=(Sy+Ey st it Ry +So+E- Ly gr).

Then,

https://gim.cultechpub.com/gim GIM, Vol. 2, No. 1, January 2026



Duru et al. 51

Loy, (14)
where  Y=(Sy+Ey+ st Hrt Ry tSey Ly ).
Equation (14) becomes
%:Y (SutEnthhosthhea Tt Ry TS0 E oy Higr)

=Y(Ay —(om L, 1) Sy tam L,Sy— (G o)+ ) Ene 0y By
—(t o tyto s to By (o tos) . tplas
—(ti eyt ot o sty hoptos 1 Ry tA,
02l 30 nz g Malner) S Gelsyr ) St o (o Lz 13 iz M der) Soy = (V) E AV E L~ A pg Ay L
=Y(Ay—1 Syt Ep s e a ot R)~Todhes T3l g Talnor
TN WSt E L ) Kl Stpg As—lsir)
=Y(A 1 Ny lhos T30 ho g Tadho gt Ay =N KISt PG A
—Hslsir)-
P4As

Hs
wsIsir< pgs. Using 1y Ny=Ay, uN,,=A., and udgr= pg/, then

as shown in section (1), which means that 7;N,<A,, uNV,,<A., and

ZV—

Clearly, O§Nh§1:—1", osszgAﬂ—" and 0<g;<

av
== @lhas Tl Tl s rS:,) Y<0.

This shows that the zika endemic equilibrium point is GAS since %<O. The global stability of the zika endemic

equilibrium point indicates that zika virus disease will persist in the system at a stable level irrespective of the size of
the initial infected population. This necessitates the need for the control measures suggested in this work.

4. Numerical Simulation

4.1 Effects of SIT Only

The purpose of releasing the sterile males is for them to mate with the wild females so that the females when pregnant
will lay eggs but cannot hatch them. The effects of this interaction are shown in Figures 2-3 using the values in Table 1.
The simulation showed that the infectious human and mosquito populations reduced greatly as the sterile males mates
with the females in the wild. This occurrence is associated with the fact that when the females in the wild mates with the
sterile males and become pregnant, the lay eggs without hatching them. This causes the number of the mosquitoes to
reduce with time.

(a) 300 T T T T T T T T T (b) 160
s ithout any control e ithout any control
w— myith SIT only m— wmyith SIT only

120
@ 200 g
: s
g 5
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E 150 E

§ 8 a0
a
Y 100 £
o

\ 60

N o
50 Bl B
40 - -
T o am owm owm =
0 0 20 30 40 5 6 70 80 90 100 20 : . : : : : : : :
Time 0 0 20 30 40 5 60 70 80 90 100

Time

Figure 2. Exposed and symptomatic humans under SIT. (a) Exposed humans under SIT only. (b) Symptomatic humans under SIT
only.
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Figure 3. Asymptomatic humans and infectious mosquitoes under SIT. (a) Asymptomatic humans under SIT only. (b) Infectious
mosquitoes under SIT only.

4.2 Effects of Treatment Only

In Figures 4-5, the effects of using treatment only as a control measure is shown. The plots showed that while the
population of symptomatic humans reduced significantly under treatment, the other infectious compartments were not
much affected. The symptomatic humans reduced as expected since they are the only population undergoing treatment.
However, the occurrence of asymptomatic cases who are not treated ensures that zika virus disease will continue to
spread in the system explaining why the other infectious compartment did not reduce significantly. This observation
underscores the need for preventive measure to be adopted in the control of the disease since treatment offers little help
in this regard.
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Figure 4. Exposed and symptomatic humans under treatment only. (a) Exposed humans under treatment only. (b) Symptomatic
humans under treatment only.
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Figure 5. Asymptomatic humans and infectious mosquitoes under treatment only. (a) Asymptomatic humans under treatment only. (b)
Infectious mosquitoes under treatment only.
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4.3. Effects of Treatment and SIT

In this case, the effect of combining both control measures are simulated and shown in Figures 6-7. This control
measure is shown to perform better than using either of the controls separately. Both the infectious human and
infectious mosquito populations reduced more significantly in this scenario than using when any of the controls are
employed independently. This shows that it is preferably to employ measures that affect humans and mosquitoes in the
control of the disease than using a measure that affect only either of them. The results of the simulation confirm existing
knowledge that controlling the multiplication of mosquitoes is a significant step towards controlling disease borne by
mosquitoes.
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Figure 6. Exposed and symptomatic humans under SIT and treatment. (a) Exposed humans under SIT and treatment. (b)
Symptomatic humans under SIT and treatment.
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Figure 7. Asymptomatic humans and infectious mosquitoes under SIT and treatment. (a) Asymptomatic humans under SIT and
treatment. (b) Infectious mosquitoes under SIT and treatment.

5. Sensitivity Analysis of the Zika Model

Sensitivity analysis was carried out in this work using the normalized forward sensitivity index [30]. Let p be any
parameter then, the sensitivity index of R, with respect to p is given by

._OR:  p
gﬁ—ng—:. (15)

The sensitivity indices are shown in Figures 8-9 and Table 2. The parameters with positive sensitivity indices increase
the endemicity of zika virus disease hence there is need to reduce their values in order to effectively control the disease.
On the other hand, the parameters with negative sensitivity indices decrease the endemicity of zika virus disease and
need to be increased to help control the disease. From Table 2, the contact rate of mosquitoes with humans, a has the
highest sensitivity index. This shows that one of the ways to control the spread of zika virus is to reduce or eliminate the
contact rate of humans with mosquitoes. The more humans have contact with mosquitoes, the higher the probability of
infections taking place. Also, the rate of recruitment of humans and mosquitoes also increase the endemicity of the
disease.
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Sensitivity index

Parameters

Figure 8. Sensitivity plot.

Sensitivity index

Parameters

Figure 9. Sensitivity plot cont’u.

Table 2. Sensitivity indices for R,.

Parameter Values Sensitivity Index Parameter Values Sensitivity Index
Ay 50 0.5 T 0.00004 -0.5002
A, 100 0.5 T, 0.0003 -0.00003

a 0.4 1 T 0.0002 -0.00007
d 0.3333 0.00007 74 0.0001 -0.00005
m 0.0009 0.5 X1 0.31 -0.0585
2 0.07 0.0233 X2 0.62 0.0585
M3 0.07 0.3918 o)) 0.1429 -0.0156
N4 0.05 0.0848 (0% 0.1667 -0.0847
v 0.1111 0.1668 3 0.118 -0.3917
v 0.85 -0.0077 U 0.0556 -1.1668

This implies that humans must avoid places where mosquitoes are rampant and ensure that efforts are made to reduce
the recruitment of mosquitoes. It is also shown that probabilities of transmission, #;, i=1,2,3, incubation rates, J and v,
as well as asymptomatic cases all increase the endemicity of the disease. The parameters with negative sensitivity index
such as rates of recovery, w;, i=1,2,3, natural death rate of mosquitoes, x, rate of treatment, i, etc. need to be increased
to help reduce the spread of the disease.

The 3D plots further highlighting the effects of the parameters on the zika control number are shown in Figures 10-12.
In Figure 10, it is shown that while an increase in the proportion of symptomatic cases, y; leads to a decrease in the zika
control number, R, an increase in the proportion of asymptomatic cases, y, leads to an increase in the zika control
number. Also, an increase in human contact rate with mosquitoes, o leads to an increase in the zika control number, Ry,
as well as an increase in the probability of transmission from mosquitoes to humans, #;. However, in Figure 11, an
increase in incubation rates of the disease both in human and mosquito populations, J, v, and probabilities of
transmission from humans to mosquitoes, #,, #3 all lead to an increase in the zika control number. But, in Figure 12, it is
shown that an increase in 74 leads to an increase in the zika control number, R, while an increase in the rate of treatment,
w leads to a decrease in the zika control number. This further explain the sensitivity analysis in Table 2 and Figures 8-9,
thus highlighting key parameters that affect the endemicity of the disease.

https://gim.cultechpub.com/gim GIM, Vol. 2, No. 1, January 2026



Duru et al.
Effect of X, and X, on Ru

(a)

1500

2 1000

=

1500

(b)

1000

x10°

6

o 4

2

a
1

55

Effect of o« and 7, 0n Ro <108

=

[

6
5
3
1 1
0.5
05
0
N 0 o0 a

Figure 10. Sensitivity of the zika control number R, with respect to the parameters y;, y» and a, #;. (a) 3D plot of Ry w.r.t ¥; and y,.
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5. Conclusions

This work considers a zika virus disease model which incorporated treatment of infectious humans and vector control
through sterile insect technique. The model is set up to show how the interaction of female mosquitoes in the wild and
the introduced sterile males leads to control of zika virus disease. The DFE point of the model is shown to be both
locally and globally asymptotically stable when the zika control number, R, is less than one. The existence of a unique
endemic equilibrium was shown and stability conditions of the endemic state were also obtained. The vector population
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was effectively reduced by the application of SIT hence the spread of the disease will be reduced with time. The effect
of treatment was also shown in the work. The analysis showed that employing treatment alone in the control of zika
virus disease is not a good strategy due to increased rate of asymptomatic occurrence associated with the disease.
Conclusively, employing SIT and treatment simultaneously will help to control the Aedes mosquito population and
spread of the disease as shown in this work. In furtherance of this research, other control measures can be investigated
and compared with the ones employed here. Also, considering saturated incidence in the force of infection or
application of further controls will help understand the disease dynamics more.
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