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Abstract

In this paper, we presented the existence of mild solutions for a class of first order non local impulsive functional
integrodifferential equations with time varying delay (NIFIETVD) in Banach spaces. The investigation is executed
within the framework of resolvent operator theory along with fixed point approaches, particularly the Leray-Schauder
nonlinear alternative and Banach contraction principle. Sufficient criteria for guaranteeing the existence of solution are
established by imposing suitable continuity, compactness and growth conditions on the related nonlinear operator. In
contrast to many previous results, the analysis permits the nonlocal term to satisfy weaker continuity assumptions,
hence widening the scope of applicability. Moreover, the analysis emphasizes how impulsive effects and nonlocal
conditions can be steered within a unified framework, thus enriching the previous existence results for functional
integrodifferential equations (FIE). At last, to validate the abstract results, a concrete application is stated, illustrating
the usefulness of the derived outcomes.
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1. Introduction and Problem Statement

Due to the wide range of theoretical importance and practical applications in many realms of science and engineering,
the investigation of functional and integrodifferential equations in Banach space have attracted very much attention of
the researcher see for instance [1,2]. A lot of real world phenomena emerging in control theory, physics, population
dynamics, biology, and economic are better explained by models that consist sudden changes and memory effects. To
tackle these complexities investigators have turned to impulsive FIE that combine key characteristic such as integral
terms to describe hereditary effects, delay effects and the impulsive conditions to reflect sudden and discontinuous
changes [3-5].

In modern applied mathematics, impulsive effects are of particular significance. They model sudden changes in the state
of a system, see for instance, switching phenomena in electrical circuits, dosing in pharmacokinetics, and harvesting in
biological populations, notice the monograph of Samoilenko and Perestyuk [6], and in [7-11] and the references cited
therein. Classical methods of ordinary differential equation that depend solely on continuous evolution are inappropriate
to explain such types of behaviors. Thus, impulsive functional differential or integrodifferential equations (IE) have
become a necessary part of nonlinear analysis obtaining increasing interest from both practitioners and theoreticians.

On the other hand, a class of IE is a significant class of functional differential equations which describe many
dynamical systems containing nuclear reactor physics, visco-elastic fluids and population dynamics as discussed
extensively in [12]. Additional examples include models of brain dynamics [13,14], as well as infectious disease
spreading [15].

To investigate the equations of the type NIFIETVD, Banach spaces provides a unified and abstract framework which is
appropriate for treating system governed by partial differential equation (PDE) with memory and impulses. Under this
setting, the main challenge is to derive the conditions for the existence, uniqueness and other qualitative properties of
solutions. Last many decades different types of techniques have been evolved to address these problems. These consist
of the use of fixed point approaches such as Banach, Schaefer's, Schauder and Krasnoselskii's fixed-point theorem
[16,17], the methods based on semigroup theory [18] and the use of measure of noncompactness [19,20]. However, the
resolvent operator approach is applied in relatively few works, especially for first order NIFIETVD in Banach spaces.
Within weaker assumptions this operator-theoretic approach generalizes the previous results as well as offer more
refined tools for deriving existence theorems.

In contrast to initial conditions, that characterize the state of a system at a single point, nonlocal conditions take part in
the solution over an interval or through integral relations. These conditions generally comes in to picture where the
present state depends on past effects, as in population dynamics, control theory and stability analysis. It give a more
realistic framework than the classical conditions. Due to the above advantage over the classical conditions, nonlocal
condition extensively investigated for numerous class of differential and IE, leading to important advances in existence
and uniqueness theory. Byszewski started the investigation of nonlocal initial value problems. He used the semigroup
approach to derive the existence, uniqueness of mild, classical and strong solution of various kinds of abstract
differential [21,22]. Since then, many researchers [23-25] investigated the abstract nonlocal conditions together with
differential and integrodifferential equations in abstract spaces.

Time varying delay signifies a situation in dynamic system in which the delay in the system’s response changes
dynamically rather than remaining constant. These delays based on factors like current state of the system,
environmental conditions or external inputs, making the system behavior more complex and challenging to anticipate.
Such delays generally present in real phenomena, including communication network, control systems and biological
systems, where transmission, processing or reaction times fluctuate. In mathematical models, time varying delay are
represented as system variable or function of time that significantly impact the stability, controllability and the existence
of solutions. Carefully taken in to account of these delays is important, as even small fluctuations may be the lead to
instability or unexpected dynamics, requiring developed analytical and computational approaches for effective
management. Many authors explored the existence of solution for differential or integrodifferential equation with time
varying delays of various kind, see [26-28].

Several authors [29,30] established the existence results for various class of impulsive integrodifferential equation with
nonlocal conditions assuming both delayed and non-delayed cases. Kumar et al. [31] have investigated nonlinear IE
along with time dependent delay in Banach spaces. It derived the conditions for the existence and uniqueness by
employing semigroup approach. Chadha and Pandey [32] studied a class of non-autonomous functional differential
equation of neutral type associated with impulsive and nonlocal condition in Banach space. It derive the existence of
mild solutions using approximation techniques combined with Krasnoselskii’s fixed point theorem. The method
overcome strict conditions on impulsive and nonlocal term. In [33], author studied the nonlinear IE with time varying
delay in Banach spaces. Applying Schaefer fixed point theorem in association with resolvent operator author
established conditions assuring the existence of solutions. In this manuscript we have investigated nonlocal Cauchy
problems for nonlinear IE with resolvent operators offers an abstract formulation of partial integrodifferential equation
that emerged in several applications like heat equations, viscoelasticity, and several other physical models [23,34,35].

Inspired by the work that is presented above, we suppose that NIIETVD of the following form:
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a)'(t)=A(z)[a)(t)+'rY(t,h)a)(h)dh}

0

.p (t,a)(dl (O)r(d, ). [ (150 . (h)))dh] n
+P, (z,a)(q)l (t)),...,a)((pm (t)), j(;Jz (t, ho (gom+l (h)))d h)

te2=[0,c],t#t,i=12,..k,
w(0)+g(a))=w0, 2)
Ao(t)=p,(o(t)).i=12...k, ()
where the unknown function w() which takes its values in V' , a Banach space. Here the operator A(t) is supposed to
be closed and linear in V' , whose domain D(A) is dense in V that remains fixed for all ¢ . Consider
0=t, <t <..<t, <t, =c be a finite sequence of prescribed points. At each point f=¢ (i =1, 2,...,k) , the
discontinuities of a)(t) is represented as Ao (1, )= a)(tl+ ) —a)(tl.‘ ), where the notations a)(tf ),a)(tl.‘ ) mark the right and
left limits of a)(t) . The nonlinear operator are given by

BExV"™ SV, B ExXV"™ SV | J,J,:ExExV >V , ¢:PC(EV)—>V , along with given functions

1°
d:E—>EIl=12,.,n+land ¢,:E—>E, p=1 2,.,m+1. The linear operator Y(t,h) which is bounded in V' for
each t,heZ.

The presented paper is devoted to meet our principal goal in which we have investigated the NIFIETVD problem
described in (1)—~(3) within the structure of Banach spaces. Besides of the following conventional route, the study
utilizes an association of advanced analytical tools—namely, the Banach contraction principle, the Leray—Schauder
nonlinear alternative, and the structure of resolvent operators—to validate the existence of mild solutions.

2. Preliminaries and Fundamental Concepts

In the sequence of derive our main results, we begin by presenting some auxiliary results, notations, and basic
definitions in which our analysis in the preceding section will take place.

Consider C (E,V) represent the Banach space that consisting of each continuous mappings @:Z —V under the

supremum norm
o], = sup {”a)(t)" teE,0eC(E, V)} .

The collection of bounded linear operators from ¥V to V is expressed by B(V) with the norm

U], =sup{Jv (@)]: ] =1} -

A function @:Z — V is a Bochner integrable rigorously if its norm ||a)|| is Lebesgue integrable (for a rigorous treatment

of this concept, one may refer to [36]). Moreover, we denote by L' (E, V) the Banach space consisting of all measurable

mappings @ : = — V that are Bochner integrable. The space is equipped with the norm

e
oo, =],

To study the family of linear operators {A (t) :0<r< c} , we need the following conditions (see [37]).

o(t)|dtoel (E7).

(a) Resolvent conditions: V¢ e =, the resolvent R(l, A (t)) exists VA such that ReA>0. 3 aconstant N* >0in

such a way that

\\R(A,A(,))us( N

4] +1)

(b) Bound on operator difference: For any ¢,%,{ € E, there exists a constant 0 < y <land N” > 0in such a way that
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(4= () 4 ) < v

Moreover, V¢t e Zand 34 € pA (t) , the resolvent set R (i, A(t)) is compact.

t=¢f".

(c) Domain and operator properties: Suppose that D(A) represents the domain of the family of
operators {A(t) :0<r< c} . Consider that D(A) is dense in V' and does not depend on 7, A(t) is a closed linear
operator.

In sequence to explain the solution structure of the problem (1)-(3), let us assume the function space
PC([O,c],V):{a):E —V:o(t) is continuous for ¢#¢ , left continuous at ¢=¢, , and has the right hand limit

a)(tf ) for i=1, 2,...,k} . This is a Banach space equipped with norm

[l = supleo(1)]-

For convenience the notations, we denote #,=0 , ¢, =c . Va)ePC([O,c],V) we represent by
o(t).t (.t ]

@, (1) = .
ot ).t =1,

Also, for E PC([O,c],V)we represent byEi,i =0,L....k, the set E[ = {03[ ‘e E} )

To prepare the essential foundation of our primary result, we now state the following lemmas and definitions.
Lemma 1: “Suppose a subset E of PC([O,c],V) . The set E is relatively compact in PC ([O,c],V) precisely

when, Vi =1,2,....k, the associated set El is relatively compact in C([ti,t,.+1 I V) >

Lemma 2 [38]: “If the condition (i)-(iii) fulfilled, then the operator family {A(t),t € [0,c]} produces a uniquely
determined linear evolution system {F(t,h) 0<h<t< c} . Furthermore, if ¢>7% together 0<A<t<c , then the
mapping F (t,h) is a compact linear operator on V .”

Lemma 3 [39]: “Let V' be a Banach space and consider QQ — V' be a convex set which is closed. Consider a relatively
open subset S < Qwith 0eS.If H: S—>Qisa compact mapping, then one of the following hold:

(a) Ju € 0S and a constant 7 € (0,1) such that u = lH(u)

(b) H has a fixed point in s .

Definition 1 [40-42]: A resolvent operator associated to NIIETVD (1)-(3) is defined as a bounded operator valued
function F (t,h) € B(V),OS h<t<c, where B(V) expressed as the space of bounded linear operators on V' . The

operator F (t, h) meets the following conditions:

(a) F(t,h)is strongly continuous in both the variables 72 and ¢, F(h,h)=1,0<h<c, ”F (t,h)" < Cley(tfh) for some
constants C,and y.

(b) The operator F(,7) maps Z into itself that is F(¢,7)Z < Z , and F(t,h)is strongly continuous in 7 and ¢ on
Banach space Z . Here Z represents the Banach space that is formed from the domain D(A) of A(t) , equipped with the

graph norm.
(¢) Yo eV , the mapping F (t, h) is continuously differentiable in both #,% € = and the derivative is stated by

L eno=a() Pl ¥(03)F(30)0d3)

Definition 2: A function a)() :E —V is called a mild solution of (1)-(3) if it is continuous and V@, € V', it fulfills the

associated integral equation
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w(r)= F(t,O)[a)O —g(a))]+ z F(t,t) 0, (a)(t,))

O<t; <t

+J.0’F(t,h){Pl (h,a)(dl (7))o (d, (h)),IOth (h3.0@,, 6 )))d:;j }h @
+ tF(t,h){Pz (h,a)(gol (1)) (0, (1)), jJ (n5.0(p,. )))“’Sj }h .

0

In addition, the following assumptions are considered:

(Al) Vt,h >0, the resolvent operator F(t, h) is compact.

(4,) The functions B, :ExV""' —V and P, :ExV"" -V are continuous. 3 constants C,,C,>0,C,,C, >0 in such

a way that Vv,,w, eV,l=12,..,n+land v,,w, €V,p=12,..,m+1, we have
_ n+1 _
¢S
=1
_ m+1 _
<q z v, =Wl |

HP1 (6T )= B (912 )

P, (I,VI,VZ...,VHH)—PZ (t,WI,WZ...,Wm+1)

and
C, = max |B (1, 0,...,0)”,
C, = max |P2 (t,O,...,O)".

(4,) The functions J,,J, :ExExV —V are continuous. 3 constants C,,C; >0, C,,C5>0 in such a way that

Yv,wel,
-

rv

HJ1 (t.h,7)-J, (thv_v)u <c,

Ty (t.17) =, (t,h,v_v)us c,

and
C, = max |lJ, (t,h,O)",
C, = max [/, (. h,O)”.

(A4) The functions d,:E —>E,/=1,2,..,n+land ¢,:E—>E, p=1,2,...,m+1 are continuous and fulfill the conditions

d(1)<t,1=12,...,n+1and ¢, (t)<t,p=12,...m+1.

(AS) ,€C (V,V),izl,Z,...,k are all compact operators. It consists continuous nondecreasing

functions p, : [0,00) —(0,00),i=12,...,k, in such a way that

||50i (V)" <p, (M), vver.

(AS) The function g() 1 PC (E,V) —V is considered to be continuous. 3 a number &€ (O,C) in such a way
that g(a) = g(&) ,Vo,6e PC(E,V) ,if G(t) = 6(t),Vt e (a,c) . Furthermore, there exists continuous nondecreasing
function A : [0,00) — (0,00) in such a way that

le (o))< A("o-”Pc),O' e PC(EV).

(Aﬁ) A positive constant O > 0 in such a way that
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o
{e(G:C+CCr)+(C+ G )] .

k
C |||+ A0+ p 0"+
i=1

Where D _e{C,[(ézn+6}n1)+c(ézc4+é}C5)J+7/}c
=

3. Main Results

Theorem 1: Let us assume that a)(O) eV . Again, consider that assumptions (A1)_(As) met. Then, the NIIETVD
problem stated by (1)-(3) admits at least one mild solution on the interval =.
Proof: Let us initiate by setting C, := C, [(néz +é3m)+ (CA'ZC4 +Cﬁ'3C5 )c}+ v . In order to proceed, we set in the space

PC (E, V) the equivalent norm described as

ol =supe o (t)].
o], = sur

With this choice, one can readily confirm that ¥ = (PC (E, V),""Y) is any Banach space. Now, let us fix ® € PC (E, V) .
VteE,0 €Y, we now proceed to introduce an operator
t

(Woo)(t) = F(t,O)[a)O —g(@)}+ Z F(tt,)p, (@(tl.))+J‘ F(t,h)

0<t, <t 0

Noting that F(.,())(a)o—g(@))ePC(E,V) , it follows, from condition (4,)—(4,) that (Weo)(t)eY,VoeY .

Consider 0,6 €Y . We have
e (oo ) (1) = (Wos ) (¢))

t
< efc(,zJ'
0

<CG [ e Jold (m)- 6 (d 1)+ -+ o @, (1) @, ()
I:J1 (n3.0(d,., (3)))4113—'[07211 (n.3.6(d,, (3)))d3
GG [ e e Mo (a (m)-6(a @) -+ o (0. ())& (0, )]

J.oth (h,3,0(¢m+1 (3)>)d3 _I /2 (h’s’&(%ﬁl (S)))dS

<GG [ e e Mo (n)-& (M| .t |o (1) ()]

+

+
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oot ()0 (0 ()i Jo
w6 [[e e Jo ()= wot fo (1)- 6 0] +C. o (0. (9)- (0 (3
<GGf e ||a(h)—&<h)||+c4c o (1)~ ()}
GO e Cﬁ””’[mllo (e o ()& ()
& (n)fan
o(n)- G (nin

SCléz(n+C4c)J‘te(C° Mg po— 6], + C,Cy (m+Cue J' @ o | d

<C CI C°7ht{n+Ccsupe Cot

+CCJ- (Cor)(—t [(m+Cc supe o

<C [(n 0, + Cym )+ (G, + GGy H J‘Oe< 0y o ],

which demonstrate that

—Cyt

(o) (1)~ (W) (1)] < 5o =1, ot €=

[(7.0)(6)- (%) (1) < S|o -5, .G e 7

This means that, Wy is a strict contractive, the Banach contraction principle employs, assuring that ¥, possess a unique

fixed point o € Y . This, in turn, derives that the equation (5) contains a unique mild solution on [O,C] . Consider

é(t):{G)(t),g <t<ec,

O(¢),0<r<e.

From equation (5), we have

{P] (h oo (d, (7)), (d, (h)),J.Oh J,(n.3.04(d,,, (3)))dsj ©)
P (h,% (01 (1)),-r05 (9, (h)),j: 7, (1304 (0, (S)))di‘ﬂdﬁ .
We introduce the map 7 : PC, = PC([£,c].V ) - PC, stated by

(10)(t) =04 (t).e<t<c. @)
Our aim is to establish that 7 holds every conditions of Lemma 3. The proof will be organized in successive steps.

Step 1. 7 maps bounded sets in PC, into bounded sets.

Choose A >0 and define

©eC, (&)= {o- € PC([g,c],V); sup

e<t<c

o(0)| <A},

It is suffice to demonstrate that 3 M > O such that VO € C, (3) one has ||I G)"PC <M
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Fix®e(C, (8) . Then, VO <t < ¢, we have

e Jos (0] e |F(0) @, -<(6)]]+
e[
e [ ()2 (1.0, (0, (1) s (0, (). [ 2 (150, (000 (3) 5 |
<6 [fas @)+ X))

+C1.[ e"[ )
0

PRACHLACIO)

0<t, <t

R (1.0, 0)] R (10,...0)[an+ ¢, [ e
{ P [h,aé (9, (1))s-05 (9, (;-z)),j:.l2 (n.3.05 (0, (3)))&)—132 (1,0....,0)
+|2, (n.0.....0)|

< [Joul+[s (6)]]+<: ip,. lo@c [e[C fs e -+ b )]
3 @) 30 130 o

e[ o wﬁhwm

s (1304 00 ()2 (030 3.0 €
<c[la=rlol, Jre ol e [6 b o)

e(Cllrg (M€ )+€ Jamec [l 6 o (e (g ()€ G, Jam
RGeS e EY RN | PR

G (cCC+C) _
y

+

SC][||a)0||+A(t)]+C]i:p[(t)+ !
+C, [(ézn +Cm)+e(C,C, +CC )} ‘Ee 7 oo (W) 2

By applying the Gronwall’s inequality

’7’”0' ||<{C o ||+ A () +C Zp

Consequently

/—’\—\
A
S
40‘
+
S
ol
N —
+
—_
(3}
+

)}} ecl[(c‘zwam)ﬂ(ézg+éjc5)}c.

w

|7e],. {c o[+ A 1))+ €, Zp GG )+(Co+ )}} Jallemampelecoaalr
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Step 2. /: PC, — PC. is continuous.
From (6) and assumptions (Al)—(AS) , we suppose that for ©0,,0,cC (6) , 0O0<t=<c

o ()=, (r)” <e F(t,O){g((:)l)—g((:)z )}

; F(t,1)0,(0,(1))- ;,F(t’t" )o: (@, (:,))

e’

+

%%, (8 (1)-%, (a () +\k 0. )
[ATEENTS <s>>)ds—Jz (304 (oo @ >>)ds }fh
~<(6, )+ Xl 0, €)oo, € [

(o, (1)-a5, (W] +-. e (@000 )00, (.0 )l i
+céj’ [ o5 (h)_%z W -+ |pe, ()05, 0)]

(00a(3)-4. (o ) 1

(6. e 3honfor @)oo 66 o

oo, ()=, @)][an+CC, [e | mbpy ()05 )] +Ciclo, (1)-
(@6 X0, ()0, )

+C, [(é2n+é3m)+c(ézC4+é3C5 ):| J.Ote’yh o, ()

o, (1)-05, ()]t C,

<, Hg 6,)

E

SC1‘§((:)1)_

oo, (h)=0, ()] +Cie

(h)mdh

(mfn.

By using the Gronwall’s inequality once more, we have that, for ¢#,0,,0, as defined above
e’}/

o 026, (=6 |[s(@)-5(e]

This again leads to

(0, (t))”:lx olierampdecacall vie[o.].
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Tl (o0)-w(e.0))

G Czn C‘}m 062C4 é;CS c . .
e{ [(Ememre(Ccss )}y} ,Ve<t<¢,0,,0, eC, (8) . Thus, the operator [ is continuous.

lre,-10,],. <C, l:”g((:)l -

Step 3. [ is compact operator.

To proceed it, we assume the decomposition / =1, +1, , where I, and I, are the operators on C, (8) defined

respectively by

(10)(1)=F (.0) @~ <(8) ]+ [ 7 (t.1)

(L,0)(1)= D F(t.t)p,(0(1)), 6 <t <c.

0<t,<t

First of all we demonstrate that I, is compact operator.
(@) I, (Cx (s)) is equicontinuous.
Suppose that e <t, <t, <c, we obtain

Consider © € G, (8) , we get
"Il@(tz)—ll(a(tl)"SH[F(IZ,O)—F(Q,O)][@O—g(@))} j:F(tz,h)

xP, (h,a@ (d,(1)),..04(d, (h)),j:Jl (73,05 (d,.. (3)))613)

L F(R,,h)R|h

+

—ij,hm( 5 005 (0 (). [ (1305 (s Jn
< 0)-F (oA O] [ 0 )

1 (1 (0 1) (0, (). (5.7 a0 (3)) 5

e[ ey (). (4, (1), (0.3, (a4 ()5

f 1 )= ]| 1.0, (0 (). (0 (). 2 (13,03 o ()5
e [ 1 (0. (0) o (). (1,504 (.0 (3) 5

Noting that

12 (1 1) (0, ). [ (1.3, 0, )
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<

Pl(h,a@(dl(h)) ~~~~~ 7 (,(1).|

-PR (ii,O,...,O)||+||P1 (7,0,....0)|
_H% (cy ()] -+ (, (m))] +
oo ()] o 0]+ |

n ||U(:) (h)||+ c {C4 sup "aé [(h ])||+ C, H +C,
hele

c,C

)

IA

}+C2

J1(1,3.04(3)) =, (1,0,0)|+ ], (1,0.0)]} ds} +C,

()

)

IA

[S]

IA
9L

Séz[(n+cC4)t+cCV’4J+CV’2.

and

_p, (f-,,o,_._,o)||+||132 (7,0.....0)|
. _HO'@ (€0| (h))“+.-.+”0'@ ((pm (h))”+
<G [Jes (- +les ]|

7, (13,04 (3)) =I5 (1,0,0)] +[, (1 0,0)||}ds} +G,

IN
S

mlo <h)||+c{c5 swlpy ()] Hc
nele,c

Sé3[(m+cC5)t+césJ+é3.

After putting the above values in equation (8), we notice that ||11®(t2)—11®(t1 )" — 0 independently of ® € C, (8) as
t,—t, > 0 . This follows from the fact that the compactness of F (t,h) for ¢,/ >0 implies continuity in the uniform

operator topology. Therefore, the family {([19) :0eC, (g)} is equi -continuous on [6‘,6] .
(b) The set 1, (Cx (g))(t) is precompact in V .

Set ¢ <t <h <c and suppose a real number & fulfilling0 < £ <¢. For ©@ € G, (8) , we have
(1.:0)(1) = F (1,0)| @, —<(6)]
T I(:{F(t,h)PZ (h 6 (44(1))ss05 (2, (h)),_[:J2 (7,505 (0 (S)))dsjdh .

By applying the compactness of F(,7) for £,A>0 , it follows the set {(Il,§®)(t) :@eC, (g)} is precompact
G)er(g) for £,0<& <. Also, V@eCX(S),we obtain

[(re))-(1..0)(0)]
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t
< Cle’”I e’
=¢

810 0, () 0, ) 2 (3.0, b, ©))
o8 (1 0 () o, ) [ (3, o )i o

< Cle“_[tige’yh |:62 {(n+cC4)t+cé4}+C2 +C, {(m+cC5)t+cés}+é3}dh.

So, there are precompact sets arbitrarily close to the set {(1|®):®ecx(g)} . Consequently, the set
{(Il®) 1@ € C, (&)} is precompact in V' .

Further, it remains to check that 7, is also a compact operator. From [43], we see that [, is compact operator. So, we

omitted here the proof of this part. Hence [ is a compact operator.

Step 4. Now, our aim is to establish that 3 an open set S < PC, with ® ¢vI® for 0 <v <l and ® €S . Consider
ve (0,1) O € PC, be a potential solution of ® =v/® for some 0<v <1.Hence, VO<t<c,

G)(t)zvaé (t):vF(t 0 [a)o g( )]+v0;tF tt
+vJ.OtF(t,h){P] (h oo (d,(1)),05 (d, (h)),J': J,(n.5.04(d,,, (*‘s)))dsj ©
P, (h,aé (1 (1))mmn06 (2, (h))aj:‘jz (h,s,% (e (S)))dtiﬂdh .

From assumptions (4,)—(4;) and V¢ € =, we obtain "G)(t)" < "aé (t)” and

s fae(@]-c Lot

<l sl ) 3o o[- =
4G [(Cont Come (G0 + 65 )] [ o (mf 1
With the assistance of Gronwall’s inequality, the following outcome has obtained

eC] [(ézn+égm)+c'(ézc4+égC5 )}c

sl bl Ao} Sl | SLAEE A6 2C)

As aresult,
~ k C] _C(éz V4 +é3 v5 )+ ( v2 + VS )] C (6Zl1+63n1)+c(ézc4 +63C5) +yle
ol =l afle ) S ol |- =12 Jl bk
i=1
and therefore
el .

3 k C,C,+C,C.)+(C, +C
o[l sfof S OO SN,

From assumption (4 ), 3a constant Q" in such a way that lo],. # 0" Set
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o()<o)

As a result of Steps 1-4 in Theorem 1, along with the use of Arzela-Ascoli theorem it is enough to demonstrate that

S = {G) € PC([g,c],V); sup

&g<t<c

1:S— PC. is a compact map.

Since S is selected so that there is no @ € dS in such a way that ® e vI® for v (0,1) . So, in view of Lemma 3, we

deduce that / has a fixed point ®, €S . Consider w = O, - Then, we get

o()= (o) an=¢(6.) [+ 3 F(ee)e (0()
o () B(nofd ()l (). [ (30(a,. (3)a3) a0
2 10(0) (1) 00 (1). [ 22 (13 0( (3) 5
Noting that &= o, = (16.)(r) = .,6 <1< c. By (4,), we get
c(@)=¢(6.).

In the insight of above discussion, it follows that the operator @ is W has a fixed point in the set ScPC (E,V) .

4

(I
L
St

Consequently, the problem (1)-(3) has a mild solution. Thus it establish the validity of Theorem 1.
4. Example

To explicitly reveal the analytical outcomes got earlier, we now state two illustrate example.

Example 1. Consider the following partial integrodifferential equation incorporating time varying delay with impulsive
and nonlocal condition

6z(t,a)): 0? [bo(t)z(t,w)+J.[T(t’a)z(a’w)}

ot 0w’ 0

+b, (1) z(sint,w)+ sinz(t,w)+ﬁ'rbz (a)z(sina,0)da 1n
+¢2 Jo

+b, (t)z(sint,a))+sinz(t,w)+l%rl;2 (a)z(sina,0)da,
+¢2 Jdo
t,

Az(4,0)= [ e (4-a)z (@ Yoi=12.0k . (2)

0

z(t,O):z(t,ﬁ):(), (13)

z(@.0)+log 1+ (@.0) ) ha =z, (@)1 c 1 }oc pr} a9

where £>0,z,(w)eV = L*([0,7]) and z,(0)=z,(7)=0. Here, the coefficients b, ()is continuous on 0<7<c and

1

Z(O,a))+j

&

the kernel T (#,¢)is continuous for 0<a <t<c.

Consider ' = I* ([0,7]) . We define the operator A(t) by

A(t)u=by(t)u"

with domain D(4)={u eV :u,u" are absolutely continuous, u" e V,u(0)=u(1)=0}.

With these choices, A(t) generates an evolution system F (t,a) . This operator F (t,a) is constructed from the
evolution  system  framework [35,44] and possess the property of compactness, fulfilling
||F (t,a)" < Ce’"" where C, and y are some constants.
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Moreover, we impose the assumptions that are stated below:

(a) The functions b, () and l;l.,i =1,2 are continuous on the interval [0,1] . Also, the supremum norms of these remains

strictly below unity, that is, /, = sup |b, (a)| <l,i=12and l~l = sup

0<a<l 0<a<l

13,.(0:)‘ <li=12

(b) Vi=L2,...k, the functions ¢, : R > R,i=1,2,....k , are continuous as well as bounded. Further, they are square
integrable over the related domain, namely

1/2
T 2 .
z, :(L (el. (a)) da} <o,Vi=1,2,..,k.

Define the function B, :[0,1]x V' xV =V, B, :[0,1]xV xV >V ,J;,J, :[0,1]x[0,1]x
VoV ,0,:V—>Vand t: PC([0,1].V) >V by

P (t,z(d ONRATEL (a)))daj ()
=b, (t)z(sint,a))+sinz(t,a))+#'l'0tb2 (a)z(sina,0)dea ,

P, [t,z(ﬂ(t)),I;Jz (t,a,z(ﬁ(a)))daj(a))
b,

l(t)z(sint,a))+sinz(l,a))+$£l§2 (a)z(sina,a))da R

I(:Jl (t,a,z(d(a)))(a))da =$Ltb2 (a)z(sina,a))da s
J.(:J2 (t,a,z(ﬂ(a)))(a))da :#J’;l;z (a)z(sina,0)da,

and

1(z)(w)= J‘:[z (a,0)+log (1+ |z (a,a))|)}da,z e PC ([0,1 R4 ) )

Then, equation (11)-(14) reduces to the abstract form (1)-(3). Since all the conditions of Theorem 1 are fulfilled, it
follows that the problem (11)-(14) has a mild solution on [0,1].

Example 2. Diffusive Population Model with Memory, Nonlocal Birth, Delay and Impulse.
Consider a population/Chemical model with diffusion as follows

t

%z(m,t) = T*A(z(,,t)+Ik(t—h)z(.,h)dh]+(a(t,a>)—b(t,a))z(w,t—r(t)))

0

+Im(a),y)z(y,t—0'(t))dy,a) eQ= (0,7[),1 € (O,c],t #t,, (15)
Q

Az(,1,)=p, (z (.,t;)),izl,z,...,k, (16)

together homogenous Dirichlet boundary conditions Z(O, Z) = Z(ﬂ', t) =0, where

T" > 0is the diffusion constant and A is the Laplacian in @
Memory kernel & e C([O,c])

Delay functions z,o € C([0,c])with 0<7(¢),0(t) < 7,,, <c.
a,beC ([O,C] xﬁ) with a bounded and b nonnegative and bounded.

Spatial birth kernel m € L” (Q X Q) . The spatial nonlocal birth is
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Im(w,y)z(y,t—a(t))dy.

Impulse operator ¢, € L(V)
Nonlocal initial operator y € C([O,c]) and eV . Let V =L*(Q)and set &(r)=z(.,t)eV .

By taking the appropriate choices, we can find the abstract form for (15)-(17) with homogenous Dirichlet boundary
conditions and this abstract form is like (1)-(3) if P and J, are zero. Under the given Assumptions which is enlisted in

Section 2, the NIFIETVD admits at least one mild solution on [(),C] .

5. Conclusion

In the presented paper, we have addressed a new class of NIFIETVD. We have derived a criteria for existence of mild
solution of NIFIETVD with impulsive effects and nonlocal conditions in Banach spaces by imposing the framework of
resolvent operator in combination with fixed point theory and Leray-Schauder nonlinear alternative. Our analysis relax
the usual compactness. The Lipschitz assumptions applied on the nonlocal term. Due to it the range of applicability of
theory is extended. The outcome that is derived in this research work contribute to the growing theory of nonlocal IE
with impulse effects and generate a basis of further research work. The results which are derived may be extended and
generalized with stochastic effects and also to establish the stability solution for the same class. Further, in future, the
results which are established in (1)—(3) and (11)—~(14) can be used to find the numerical solution of such type of
equation.
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