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Abstract

Singular boundary value problems (SBVPs) and singularly perturbed boundary value problems (SPBVPs) are
commonly arise in the modeling of critical chemical processes, including isothermal gas spheres, electroactive polymer
films, thermal explosions, and chemical reactor theory. Due to their extensive applications, these problems require the
creation of effective numerical methods for precise solutions. Traditional methods often struggle with stiffness and
multiscale behavior, while analytical solutions are limited to specific cases. In this work, we use a data-driven approach
using Physics-Informed Neural Networks (PINNs) to solve SBVP and SPBVPs. By initializing the perturbation
parameter as a trainable variable, it is optimized alongside net-work weights and biases during training. Numerical
simulations demonstrate that causality-enhanced PINNs significantly improve the solution accuracy for singular
chemical boundary value problems.

Keywords

Scientific machine learning, Causality, PINNs, Chemical differential equations, SBVPs and SPBVPs

AMS Classification

94A08, 65N06, 68U10, 65N12.

Article history

Received: 14 May 2025

Revised: 09 June 2025

Accepted: 18 June 2025

Available Online: 24 June 2025

Copyright:

© 2025 by the authors. This article is published by the Global Open Share Publishing Pty Ltd under the terms of the
Creative Commons Attribution 4.0 International License (CC BY 4.0): https://creativecommons.org/licenses/by/4.0/

GIM, Vol. 1, No. 1, June 2025 https://gim.gospub.com/gim

https://gim.gospub.com/index.php/gim/index


1. Introduction

Singular boundary value problems (SBVPs) are encountered across numerous scientific fields, including chemistry,
physics, and biology, with applications in areas such as astrophysics [1], nuclear physics [2], modeling tumor growth
[3], electrodynamics [4], chemical reactor theory [5], and physiological studies [6]. The analytical solutions for SBVPs
are confined to certain types of equations, which has led to the creation of various numerical techniques to overcome
these obstacles. Among these techniques, the finite difference method is notably a popular direct approach that has been
effectively utilized in numerous scientific applications [7,8]. Another direct method, known as the collocation approach,
involves placing local or global approximate solutions into the differential equation and reducing the residual at specific
collocation points [9,10]. Other techniques include the series expansion method (SEM) [11], the Sinc-Galerkin method
(SGM) [12], and methods based on splines [13,14]. Nonetheless, many of these methods depend on high-order
formulations, which may lead to extensive computational requirements for linearization or discretization processes.

The variational iteration method (VIM) offers an alternative strategy when addressing SBVPs [15,16]. Although it has
significant potential, VIM faces challenges in determining the Lagrange multiplier and may not be ideal for certain
nonlinear issues. In a comparable manner, the Adomian decomposition method (ADM) [17] requires employing the
Volterra integral representation of the differential equation to adequately tackle singularities [18,19]. To overcome this
limitation, the modified Adomian method [5] incorporates Green functions but at the cost of computational inefficiency.
The advanced Adomian method [20] has been developed to address these drawbacks and enhance computational
performance.

The study of singular perturbation boundary value problems (SPBVPs) is frequently encountered in various fields of
applied sciences and engineering, including chemical reactor theory, combustion, fluid dynamics, elasticity, bio-science,
nuclear engineering, and control theory [21-25]. SPBVPs arise within the context of adiabatic tubular chemical flow
reactors that incorporate axial diffusion in chemistry. The difficulties associated with these problems stem from their
multiscale characteristics [26,27], which are defined by a small perturbation parameter ϵ that acts as the coefficient for
the highest derivative. This multiscale nature frequently leads to thin transition layers where solutions undergo rapid
changes, while the remainder of the interval shows gradual and consistent variation. This structure makes SPBVPs
difficult to solve with traditional numerical methods, particularly for very small ϵ values. Robust numerical techniques
are essential for addressing these challenges.

Current approaches for SPBVPs involve converting the problems into initial value problems (IVPs), referred to as initial
value methods [26,28-33]. Direct techniques, including the finite difference method [34,35] and spline methods [36-38],
are also commonly employed. Spline techniques provide advantages over finite difference approaches by delivering
continuous approximate solutions. In addition, advanced methods such as the wavelet-optimized difference technique
[39] and the uniform Haar wavelet approach [40] have demonstrated significant efficiency. The Haar wavelet method
transforms differential equations into systems of algebraic equations using sparse matrices, achieving faster
computation. Analytic methods, such as those based on matched asymptotic expansions [41], complement numerical
approaches by analyzing function behavior.

Recently, deep learning techniques have gained traction for solving partial differential equations (PDEs) due to their
mesh-free nature, efficiency in handling inverse problems, and capability in high-dimensional spaces [42,43].
Prominent methods in scientific machine learning include the deep Ritz method [44], the deep Galerkin method [45],
and physics-informed neural networks (PINNs) [46]. These approaches leverage deep neural networks (DNNs) to
minimize loss functions that incorporate domain-specific information and physical laws. In PINNs, the loss function
integrates the PDE residual, boundary and initial conditions, and observational data, making them versatile for
approximating PDE solutions.

The optimization of DNN parameters during PINN training typically employs algorithms like Adam [47], L-BFGS [48],
and stochastic gradient descent (SGD) [49]. However, these methods often underperform in stiff or ill-conditioned
problems [50]. To address these challenges, researchers have developed adaptive weighting strategies [51], multiscale
architectures [52,53], and ensemble learning techniques [54], including gradient boosting [55]. Adaptive activation
functions [56,57] and novel optimizers, such as Gauss-Newton methods [58,59], block coordinate methods [60], and
variable projection techniques [61-63], further enhance PINN performance, creating a bridge between traditional
numerical methods and modern machine learning techniques.

A loss function for PINNs that respects causality effectively tackles these limitations and imposes the necessary
physical principles. However, applying this adjusted causal loss function necessitates a more complex neural network
with a greater number of parameters. Given the significance of different elements in engineering design and the
challenges of simulating every moment, transfer learning is introduced within the causal PINN framework. By
integrating transfer learning, the parameters from an already trained model are utilized to initialize and train new
models. As a result, this approach lessens the computational load and speeds up convergence for future tasks, thereby
enhancing the efficiency of complex system simulations.

Although there are several numerical techniques for addressing singular and singularly perturbed boundary value
problems (SBVPs and SPBVPs), numerous methods encounter considerable difficulties, especially when handling stiff
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or multi scale systems. Traditional methods, such as finite difference, collocation, and spline techniques, often require
high-order formulations or computationally expensive discretization, limiting their efficiency and scalability. Moreover,
analytical solutions are only feasible for specific types of equations, leaving a wide range of complex problems
unresolved. Recent advancements in deep learning, particularly PINNs, offer a promising alternative by leveraging the
mesh-free nature of neural networks and their ability to handle high-dimensional and inverse problems. However,
existing PINN frameworks often struggle with stiff or ill-conditioned problems, leading to suboptimal performance.
This work aims to address these limitations by introducing a causality-driven PINN framework that optimizes the
perturbation parameter alongside network weights and biases, thereby enhancing solution accuracy and computational
efficiency for challenging chemical boundary value problems. While causal Physics-Informed Neural Networks
(cPINNs) can be applied to linear differential equations, this study focuses on SBVPs and SPBVPs due to their
complexity and the challenges they pose for traditional numerical methods. These problems highlight the strength of
PINNs in handling singularities, stiffness, and multiscale behavior where conventional approaches often struggle.

PINNs are particularly suitable for SBVPs and SPBVPs because of their ability to approximate complex solution
behaviors without requiring mesh discretization. Traditional numerical methods often struggle with singularities or
steep boundary layers induced by small perturbation parameters, requiring fine meshes or asymptotic techniques. In
contrast, PINNs naturally handle such features by incorporating the governing differential equations and boundary
conditions directly into the loss function, allowing the neural network to learn accurate solutions even in the presence of
singularities or sharp gradients.

Causal training offers a promising enhancement to PINNs by directing the learning process from simple to more
complex regions of the solution domain. This mitigates error accumulation and improves convergence, especially in
problems where standard PINNs might fail due to imbalance in learning dynamics caused by singularities. Our work
differs from existing literature in multiple ways. While recent works, such as [64], use causal PINNs for transfer
learning in beam simulations to improve generalizability and convergence, our study focuses on using causal PINNs
specifically for SBVPs and SPBVPs. Notably, we treat the perturbation parameterϵ as a trainable variable within the
network, enabling its optimization alongside the model weights. Additionally, we integrate causal training into the
PINN framework and validate its effectiveness on four distinct SBVPs and SPBVPs. For three of these problems, we
compare our results with known exact solutions, while for the fourth problem, we compare with the numerical solution
obtained using the Finite Element Method (FEM). The comparisons demonstrate significant improvements in solution
accuracy and training stability over standard PINNs, highlighting the robustness and flexibility of our proposed
approach.

The remainder of the paper is organized as follows: Section 2 discusses the architectures of PINNs. Section 3 outlines
the framework for applying transfer learning with causal PINNs to model training. Section 4 details the results of
numerical experiments, demonstrating the effectiveness of our approach in tackling challenging chemical boundary
value problems (BVPs), where traditional numerical methods often fall short. Finally, Section 5 provides a summary of
the key findings and conclusions derived from this research.

2. Physics-Informed Neural Networks

The problem is as follows: We consider differential equations of a generic type. Make sure that �: Ω → ℝ
�(u(x)) = g(x) for x ∈ Ω
�k(u(x)) = hk(x) for x ∈ Γk ⊆ ∂Ω, k = 1,2, …, nΩ (1)

A nonlinear differential operator is represented by the symbol � , while a set of boundary condition operators is
indicated by the symbol ��=1

�Γ . We treat time as an additional component of the vector � ∈ ℝ�, where � is the dimension
of the problem, while working with time-independent problems. Given that the computational domain Ω encompasses
both spatial and temporal dimensions, the initial condition can be interpreted as a particular kind of boundary condition
within the spatiotemporal domain.

2.1 DNN Approximation of the Solution

In accordance with [46], we want to use PINNs to approximate a solution of (1), i.e., �(�) ≈ �NN(�, �) , where the
trainable parameters � ∈ ℝ parametrize the nonlinear mapping �NN: ℝ� → ℝ. The network architecture usually induces
the exact shape of �NN. In this scenario, we analyze a network that consists of an input layer, � − 1 hidden layers, and an
output layer, structured as follows:

Input layer: �� = ���,
Hidden layers: �ℎ = ℕ �ℎ−1 , for ℎ = 1,2,3, …, � − 1,

Output layer: �� = ����−1 + ��

(2)

The input layer maps input features x ∈ Ω ⊂ ℝ into the dimension of the hidden layers using weights Wi ∈ ℝd×nh . The
hth hidden layer uses a nonlinear operator ℕ: ℝnh → ℝnh to non-linearly transform the (h − 1)th layer's output yh−1 into
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yo. There are various ways to represent the operator ℕ. We make use of a skip-connected single-layer perceptron, which
is as follows:

ℕ �ℎ−1 = �ℎ−1 + �ℎ �ℎ�ℎ−1 + �ℎ (3)

The parameters related to the layer h can collectively be expressed as: θh = (flat Wh , flat bh where the weights
and biases are indicated by Wh ∈ ℝnh×nh , bh ∈ ℝnh respectively. The function (flat(.)) represents a flattening operator,
and σh: ℝnh → ℝnh denotes an activation function. Finally, the output of the last hidden layer is linearly transformed
using Wl and bl to construct the output of the network yl . Figure 1 illustrates the architecture of a cPINN. The process
begins with the input x, passed through a feed-forward neural network NN(w, b) parameterized by weights w and biases
b. The network outputs an approximation u� of the target solution �.

Figure 1.Methodology of the proposed cPINN, illustrating the network architecture, PDE residual computation at collocation points,
and integration of causal training.

To enforce the governing physical laws, u� is further processed to compute its derivatives: ∂u
∂x

, ∂2b
∂x2 , …, ∂nμ�

∂xn , as required by
the PDE. These derivatives are substituted into the differential operator f: = �(u� ) , representing the PDE residual at
selected collocation points.

MSE0,BC,IC : Mean squared error on the predicted solution u� at boundary and initial condition points.

MSEf : Mean squared error of the PDE residual evaluated at interior collocation points. In the cPINNs framework, this
term incorporates the adaptive causal weights that guide the training by emphasizing regions with higher residual errors.

Training proceeds by minimizing the total MSE until the condition MSE < ϵ is satisfied, indicating convergence. If not,
the weights are updated, and the process continues iteratively.

This architecture differs from standard PINNs by employing causal training, in which the model learns progressively
from simpler to more complex regions of the domain. This strategy helps mitigate error accumulation and accelerates
convergence. Moreover, the structure supports transfer learning, enabling improved generalization to new but related
problems. These innovations are particularly emphasized in the work of Kapoor et al [64]. for beam simulation
problems.

2.2 Training Data and Loss Functional

To train the network to approach a solution of (1), we create a dataset �int = �� �=1

�int comprising �int collocation points,

which are in the interior of the computational domain Ω. The physics that the PDE captures is enforced by these points.

To enforce the boundary conditions on Γ, we also take into consideration the dataset ��� = ��
�, ��

�
�=1

���
�
, where each
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���
� contains ���

� points. Using the values of �int and ���
� for � = 1, …, �Γ, the following minimization problem is solved

to obtain the network's ideal parameters:

�∗ =arg min
�∈ℝ�   ℒint(�) + ℒ��(�)

where ℒint(�) →
boundary

interior
loss

and ℒ��(�) loss (4)

Here, the interior and the boundary losses are given as:

ℒint(�) =
��∈Dint

 �   � ��� �, �� − � ��
2
,

ℒ��(�) =
��

�,��
� ∈���

�
 �  ‖ ��� �, ��

� − �� ��
�‖2

(5)

Therefore, the expression for the interior loss ℒint is the mean PDE residual obtained by Monte Carlo integration, that is,
by averaging across the residuals evaluated at collocation points sampled in the interior of the domain. Remember that
evaluating the PDE residual typically requires a comprehension of the partial derivatives of the network output
��� �, �� with respect to the input �� . With the use of sophisticated automatic differentiation techniques, these
derivatives can be efficiently generated. Boundary loss ℒ��, the second term, guarantees that the boundary requirements
are met for a collection of points sampled along boundaries Γ��Γ

�=1
�2

.

We modify the PINNs loss functions [64]. The PDE term ℒint(�) is affected by the loss function alteration, but the
boundary loss ℒ��(�) terms are unaffected. The definition of the causal PDE loss phrase is:

ℒint(�) =
��∈�int

 �  ��ℒint ��, �

�1 = 1, �� = �
−�

��∈�int
 �  ℒint ��,�

, � ∈ �int.

(6)

The computing domain has been divided into �int timesteps. The sharpness of the weights is influenced by the causality
hyperparameter �. For the loss at each time step ��, an adjustment incorporates a weighting factor, �� . The weight �� is
determined by the total PDE loss up to time �� . By taking the exponential of the negative cumulative loss, the weights
are adjusted to prioritize the well-resolved solutions at earlier time levels. In conclusion, the causal PINN's adjusted loss
function ℒint(�) can be represented as:

ℒint(�) = 1
�int ��∈Dint

 �  ���
−�

��∈Dint
 �  ℒint(�)

ℒint ��, � (7)

The weights �1, …, �� must be big in order for ℒint(�) to be minimized, according to the modified loss function.
Starting at lower time levels and working its way up to higher ones, this architecture compels the neural network to
minimize the loss in a sequential manner. To put it simply, the causal PINN gives lower time step fully resolved
solutions priority over higher time step approximations.

After training, the optimal parameters � can be used to infer an approximate solution ��� of (1). The quality of this
solution can be assessed by means of the error � ���, �∗ = ��� − �∗ , where �∗ denotes an exact solution. In general,
the error � consists of three components: the discretization error, network approximation error and optimization error
[65]. More precisely, the quantity and position of the collocation points dictate the discretization error. The DNN's
representation capacity is linked to the networks' approximation error, meaning that it is directly influenced by the
network architecture (number of layers, network width). The optimization error is a measure of the optimizer's solution
quality. Our goal in this effort is to develop better training techniques that reduce optimization mistake.

2.3 The L-BFGS Optimizer

The Limited memory Broyden Fletcher Goldfarb Shanno (L-BFGS) algorithm is a quasi-Newton optimization method
that approximates the inverse Hessian matrix efficiently by storing only a limited number of vectors from recent
iterations. This makes L-BFGS highly suitable for large-scale optimization problems where maintaining the full Hessian
is computationally infeasible. The update rule for the parameter vector �� at iteration � is given by:

��+1 = �� − ����∇� �� (8)

where �� is the approximate inverse Hessian matrix, ∇� �� is the gradient of the objective function at iteration �, and
�� is the step size typically determined by a line search method.

The approximation matrix �� is updated using the history of the last � parameter differences �� = ��+1 − �� and
gradient differences �� = ∇� ��+1 − ∇� �� , which reduces memory requirements and computational cost
significantly compared to full BFGS [66,67].
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2.4 Advantages over Adam

While adaptive gradient methods like Adam are widely used due to their simplicity and good performance on noisy or
sparse gradients, L-BFGS often exhibits faster and more stable convergence on smooth, deterministic loss landscapes
typical in scientific computing and PINNs. Unlike Adam, which uses a fixed exponential decay to estimate first and
second moments of gradients, L-BFGS leverages curvature information to make more informed update steps that
approximate Newton’s method. This often results in fewer iterations and better final accuracy, especially for problems
where the Hessian matrix structure is informative and the gradient noise is low. However, L-BFGS requires more
computation per iteration and a line search, which might not be ideal for large-scale or highly stochastic problems
where Adam excels.

3. Numerical Experiments

This section outlines the numerical examples that were used to evaluate the PINNs technique. We also examine the L-
BFGS method's numerical performance. We track the loss functional ℒ and the quality of PINNs solution (���) during
our inquiry. The latter is evaluated using the �2 relative error, which is provided as:

ℰ��� ���, �∗ = ���−�∗
2

��� 2
(9)

Here �∗ denotes an exact solution obtained using an analytical expression or solving the underlying problem using a
SciPy's library of python. In particular, we consider the following benchmark problems. Now we discuss each problem
with its solution one by one.

3.1 Isothermal Gas Sphere

Examine the following nonlinear SBVP that arises in modeling an isothermal gas sphere [68]:

�''(�) + 2
�
�'(�) =− �5(�), 0 < � < 1 (10)

accompanied by the boundary conditions �'(0) = 0 and �(1) = 3/2. The literature provides the exact solution for this

SBVP as �(�) = 3
3+�2 [68].

3.1.1 Solution Comparison and Accuracy

The analysis of the exact and predicted solutions in Figure 2a reveals that the Physics-Informed Neural Network (PINN)
effectively approximates the solution throughout the domain � ∈ (0,1), resulting in a final loss of ℒ = 4.96 × 10−8; for
further details, refer to Table 1. This suggests that the PINN effectively captures the physics of the isothermal gas
sphere problem. From a chemical perspective, the isothermal assumption (constant temperature) is key in simulating gas
behavior in steady-state processes like adiabatic compression, where density and pressure adjust according to
equilibrium conditions. Table 2 presents a detailed comparison between the PINNs predictions and the exact analytical
solutions at selected spatial points. The corresponding pointwise absolute errors are also reported, providing a clear
view of the prediction accuracy and highlighting the maximum deviations at each stage.

Table 1. Relative error Erel and final loss L.

Problem Isothermal Gas Sphere Thermal Explosion Chemical Reactor Theory

Erel 2.99e-12 2.50e-08 5.96e-06

L 4.96e-08 7.06e-07 8.81e-07

Epochs 5000 5000 5000

Table 2. Comparison of exact and PINNs predictions at selected points.

x 0.0001 0.1001 0.2001 0.3001 0.4001 0.5001 0.6001 0.7001 0.8001 0.9001 1.0000

Exact 1.0000 0.9983 0.9934 0.9853 0.9743 0.9608 0.9449 0.9271 0.9078 0.8873 0.8660

PINNs 1.0000 0.9983 0.9934 0.9853 0.9743 0.9608 0.9449 0.9271 0.9078 0.8873 0.8660

Error 4.9e-06 6.6e-07 2.06e-06 0 1.01e-06 2.65e-06 2.5e-07 1.45e-06 1.04e-06 1.74e-06 4e-07
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(a) (b)

(c)

Figure 2. Results for the isothermal gas sphere problem: (a) Comparison between the exact solution and cPINN prediction, (b)
Maximum relative error across spatial domain, (c) Optimizer Update cost versus training epochs.

3.1.2 Error Distribution and Chemical Dynamics

In Figure 2b, the relative error is highest at x = 0 (around 0.667) and decreases as x increases, stabilizing beyond x ≈0.5.
This trend aligns with the behavior of gas spheres, where higher pressure and density near the center cause larger
gradients, leading to increased error. As we move away from the center, the pressure and density stabilize, causing the
error to decrease. This pattern is consistent with chemical systems, where local deviations from equilibrium are more
pronounced near reaction fronts or high-gradient regions.

3.1.3 Optimizer Performance and Chemical Analogy

Figure 2c shows the update cost (UC) over the training epochs when using the L-BFGS optimizer. Initially, the update
cost exhibits large fluctuations, reflecting the optimizer’s adjustments to minimize the loss function. After the initial
phase, the cost stabilizes, indicating convergence. From a chemical dynamics perspective, these fluctuations are akin to
the transient phases in a chemical reaction, where rapid adjustments occur before the system stabilizes. This analogy
highlights the importance of optimizing parameters during dynamic phases of chemical processes, such as the early
stages of combustion or phase transitions.

3.2 Electroactive Polymer Film

The following nonlinear SBVP arises from the analysis of electroactive polymer films [69]:

�''(�) + 2
�

�'(�) = ��(�)
1+��(�)

, 0 < � < 1 (11)

with the boundary conditions �'(0) = 0 and �(1) = 1 . The equation 11 provides a new analytical closed-form
expression for the dimensionless substrate concentration �(�) , applicable for all ranges of the saturation parameter �
and the diffusion parameter �. As a result, this equation can be utilized to evaluate how substrate diffusion influences
the kinetics of the reaction. The electrode surfaces created with electroactive polymer films have applications in various
fields, such as chemical sensor technology, electrocatalysis, and energy storage.

3.2.1 Solution Comparison and Accuracy

The electroactive polymer film problem is modeled by a nonlinear SBVP that characterizes the diffusion and reaction
kinetics of a substrate within a polymer film. The Physics-Informed Neural Network (PINN) solutions for different
parameter values (�, �) closely match the exact solutions across the domain � ∈ (0,1) , as shown in Figure 3a, 3c, 3e.
The concluding loss values, shown in Table 3, verify the effectiveness of the PINN method:
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Case (i): � = 0.1, � = 0.1, with ℒ = 1.3 × 10−8.

Case (ii): � = 5, � = 1, with ℒ = 1.98 × 10−6.

Case (iii): � = 0.1, � = 1, with ℒ = 4.69 × 10−8.

(a) (b)

(c) (d)

(e) (f)

Figure 3. Comparison of PINN-predicted and exact solutions for the electroactive polymer film problem at different parameter
settings: (a, c, e) show the solution profiles for cases (i) � = 0.1, � = 0.1 , (ii) � = 5, � = 1 , and (iii) � = 0.1, � = 1 , respectively.
Corresponding plots (b, d, f) display the optimizer update cost versus training epochs, illustrating convergence behavior across these
cases.

Table 3. Electroactive polymer film final loss ℒ for different cases of � and � over 2000 epochs.

- � = 0.1, � = 0.1 � = 5, � = 1 � = 0.1, � = 1

ℒ 1.3e − 08 1.98e − 06 4.69e − 08

These results indicate that the PINN effectively captures the governing physics, regardless of the diffusion (� ) and
saturation (� ) parameters. The increase in substrate concentration near � = 1 aligns with diffusion-reaction models
where substrate accumulates at the outer boundary. Tables 4-6 illustrate the comparison between the FEM and PINNs
solutions for three different cases. It is evident from the error rows that PINNs closely approximate the FEM results,
demonstrating their accuracy and reliability across all selected points.
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Table 4. Comparison of FEM and PINNs predictions at selected points (Case I).

x 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

FEM 0.9849979 0.9851431 0.9855912 0.9863387 0.9873859 0.9887331 0.9903812 0.9923309 0.9945831 0.9971391 1.0000000

PINNs 0.9849991 0.9851422 0.9855928 0.9863383 0.9873871 0.9887351 0.9903820 0.9923306 0.9945841 0.9971395 1.0000005

Error 0.0000012 0.0000008 0.0000016 0.0000004 0.0000012 0.0000020 0.0000008 0.0000003 0.0000010 0.0000004 0.0000005

Table 5. Comparison of FEM and PINNs predictions at selected points (Case II).

x 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

FEM 0.6447837 0.6479590 0.6577982 0.6743232 0.6977103 0.7282045 0.7661144 0.8118070 0.8657023 0.9282655 1.0000000

PINNs 0.6446959 0.6479491 0.6577975 0.6743097 0.6977153 0.7281991 0.7661018 0.8118080 0.8657057 0.9282588 0.9999989

Error 0.0000878 0.0000099 0.0000007 0.0000134 0.0000050 0.0000055 0.0000125 0.0000010 0.0000034 0.0000067 0.0000011

Table 6. Comparison of FEM and PINNs predictions at selected points (Case III).

x 0.0000 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 0.7000 0.8000 0.9000 1.0000

FEM 0.9916935 0.9917741 0.9920229 0.9924378 0.9930189 0.9937661 0.9946796 0.9957596 0.9970062 0.9984196 1.0000000

PINNs 0.9917005 0.9917715 0.9920241 0.9924350 0.9930186 0.9937676 0.9946791 0.9957582 0.9970060 0.9984213 0.9999999

Error 0.0000071 0.0000026 0.0000012 0.0000028 0.0000003 0.0000015 0.0000005 0.0000014 0.0000002 0.0000017 0.0000001

3.2.2 Update Cost and Convergence Behavior

The update cost (UC) evolution over training epochs Figure 3b, 3d, 3f provides insights into the optimization dynamics
of the PINN. Initially, the UC exhibits large fluctuations, particularly in Case (ii) where � = 5 , indicating significant
adjustments by the optimizer to minimize loss. As the training continues, the cost of updates levels off, indicating that
the network is converging to a solution that meets the differential equation and the boundary conditions.

From a numerical optimization perspective, these fluctuations resemble transient phases in stiff differential equations,
where rapid initial adjustments occur before reaching a stable solution. In a chemical context, this behavior is analogous
to reaction kinetics in catalytic processes, where sharp variations in reaction rates occur initially due to high reactant
concentrations before equilibrium is reached. The eventual stabilization of update cost reflects the PINN's ability to
efficiently learn the underlying physical dynamics of the problem.

3.2.3 Optimizer Performance and Chemical Analogy

The L-BFGS optimizer used in training efficiently minimizes the loss function, allowing the network to learn the
solution even for different parameter regimes. The rapid drop in update cost during early epochs suggests effective
parameter updates, similar to the initial fast reaction phase observed in chemical kinetics. The stable convergence in
later epochs mirrors equilibrium states in reaction-diffusion systems, reinforcing the PINN’s applicability in modeling
complex chemical processes such as diffusion-controlled reactions in electroactive polymer films.

3.3 Thermal Explosion Problem

Consider the following nonlinear singular boundary value problem, referred to as the Thermal Explosion Problem [69]:

�''(�) + 1
�

�'(�) = ���(�), 0 < � < 1 (12)

with the constraints �'(0) = 0 and �(1) = 0 . The exact solution to this nonlinear singular boundary value problem is
documented in the literature as:

�(�) = 2log  �+1
��2+1

(13)

where � =− 5 + 2 6 when � = 1[69].

3.3.1 Solution Comparison and Accuracy

The analysis presented in Figure 4a illustrates that the Physics-Informed Neural Network (PINN) accurately
approximates the solution for the thermal explosion problem within the range � ∈ (0,1) . The significant correlation
between the predicted and exact solutions shows that the PINN successfully captures the nonlinear behaviors
characteristic of the thermal explosion problem. This accuracy is particularly significant in chemical engineering

Israr and Khan

GIM, Vol. 1, No. 1, June 2025 https://gim.gospub.com/gim

21



applications, where precise modeling of thermal behavior is crucial for predicting reaction stability and preventing
runaway conditions. Moreover, the ability of the PINN to approximate solutions to singular boundary value problems
highlights its potential for tackling complex thermal and chemical systems. The Table 7 presents a detailed comparison
between the exact and PINNs-predicted values at various spatial points, demonstrating the high accuracy of the neural
network approximation. The corresponding error values show that the maximum absolute error remains within
acceptable limits across the domain.

(a) (b)

(c)

Figure 4. Comparison of predicted and exact solutions for the thermal explosion problem: (a) solution profiles, (b) maximum relative
error at different spatial points x, and (c) optimizer update cost versus training epochs demonstrating convergence behavior.

Table 7. Comparison of exact and PINNs predictions at selected points.

x 0.0001 0.1001 0.2001 0.3001 0.4001 0.5001 0.6001 0.7001 0.8001 0.9001 1.0000

Exact -0.2129897 -0.2109661 -0.2048869 -0.194715 -0.1803877 -0.1618153 -0.1388794 -0.1114303 -0.0792831 -0.04221441 0.0000

PINNs -0.2130675 -0.2109984 -0.2049181 -0.1947346 -0.1804015 -0.1618348 -0.1388922 -0.1114324 -0.07928911 -0.0422234 -0.000003

Error 7.773e-05 3.226e-05 3.121e-05 1.967e-05 1.378e-05 1.953e-05 1.284e-05 2.110e-06 6.014e-06 8.993e-06 3.014e-06

3.3.2 Error Distribution and Thermal Dynamics

As shown in Figure 4b, the maximum relative error is observed near � = 0 and gradually decreases as � approaches 1.
This trend aligns with the physical characteristics of the thermal explosion problem, where the temperature gradient is
steepest near the center (� = 0) due to the singular nature of the governing differential equation. As � increases, the
temperature distribution becomes more uniform, leading to a reduction in error. This behavior is consistent with thermal
dynamics in chemical systems, where high gradients near heat sources or reaction centers can result in localized
instabilities, while distant regions tend to stabilize. The highest errors occurring near the center of the domain further
confirm the physical behavior of thermal systems, where steep gradients often lead to greater numerical discrepancies.

3.3.3 Optimizer Performance and Thermal Analogy

Figure 4c illustrates the update cost (UC) evolution over training epochs when using the L-BFGS optimizer. Initially,
the update cost exhibits significant fluctuations, reflecting the optimizer's adaptation to the nonlinear and singular nature
of the problem. As training progresses, the update cost stabilizes, indicating convergence to an optimal solution. From a
thermal dynamics perspective, these initial fluctuations resemble the transient phase of a thermal process, where rapid
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changes in temperature and heat flux occur before the system reaches a steady state. This analogy highlights the
importance of optimizing parameters during transient phases in thermal processes, such as ignition or cooling, to ensure
accurate and stable predictions. The stabilization of the update cost further reinforces the effectiveness of the PINN in
handling nonlinear singular boundary value problems.

3.4 Chemical Reactor Theory

Consider the singularly perturbed boundary value problem below, which is arises from the theory of chemical reactors
[70]:

��''(�) + �'(�) − �2 = 0, 0 < � < 1 (14)

with the boundary conditions �(0) = 0 and �(1) + ��'(1) = 1 . The exact solution for this nonlinear singularly
perturbed boundary value problem is presented in the existing literature as [71]:

�(�) = 1
2−�

+ � �−�/�

4
(15)

3.4.1 Solution Comparison and Accuracy

Figure 5a compares the exact solution with the predicted solution obtained using the Physics-Informed Neural Network
(PINN) for the chemical reactor theory problem. The PINN closely approximates the exact solution across the domain
� ∈ (0,1) , demonstrating its ability to capture the complex dynamics of the singularly perturbed boundary value
problem (SPBVP). The accuracy of the PINN is particularly important in chemical reactor theory, where precise
modeling of reaction kinetics and diffusion processes is crucial for optimizing reactor performance. The close
agreement between the predicted and exact solutions highlights the effectiveness of the PINN in handling SPBVPs,
even in the presence of a small perturbation parameter � . The Table 8 compares the exact and predicted solutions at
selected spatial points using PINNs. The prediction closely follows the exact solution, with a nearly uniform small error
across the domain. The results demonstrate the consistency and accuracy of the PINNs approximation for this problem.

(a) (b)

Figure 5. PINN-predicted and exact solutions for the chemical reactor problem: (a) solution profiles, (b) maximum relative error
across spatial domain, (c) optimizer update cost versus training epochs, and (d) influence of parameter ϵ on the relative error,
illustrating model sensitivity.

Table 8. Comparison of Exact and PINNs predictions at selected points

(c) (d)

.

x 0.0001 0.1001 0.2001 0.3001 0.4001 0.5001 0.6001 0.7001 0.8001 0.9001 1.0000

Exact 2.001506 1.891857 1.762160 1.612461 1.442761 1.253058 1.043353 0.8136467 0.5639378 0.2942272 0.0048141

PINNs 1.998317 1.888699 1.758943 1.609242 1.439625 1.249882 1.040091 0.8104342 0.5608223 0.2910324 0.0016134

Error 0.003189 0.003157 0.003217 0.003219 0.003135 0.003176 0.003262 0.003213 0.003115 0.003195 0.003201
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3.4.2 Error Distribution and Reactor Dynamics

Figure 5b shows the maximum relative error distribution across the domain. The error is highest near � = 0 and
decreases as � approaches 1 . This trend is consistent with the physical behavior of chemical reactors, where steep
gradients near the reactor inlet (at � = 0 ) lead to higher numerical errors. As the reaction progresses and the system
stabilizes, the error decreases, reflecting the smoother variation in concentration and reaction rates. This behavior aligns
with the nature of SPBVPs, where the perturbation parameter � introduces a thin boundary layer near � = 0, making the
solution more challenging to approximate in this region.

3.4.3 Optimizer Performance and Reactor Analogy

Figure 5c illustrates the update cost (UC) over training epochs when using the L-BFGS optimizer. Initially, the update
cost exhibits significant fluctuations, indicating the optimizer's struggle to minimize the loss function in the presence of
the singular perturbation. As training progresses, the update cost stabilizes, reflecting the convergence of the network to
an optimal solution. This behavior is analogous to the transient phase in chemical reactors, where rapid changes in
reactant concentrations and reaction rates occur before the system reaches a steady state. The stabilization of the update
cost underscores the PINN's ability to handle the stiff nature of SPBVPs, making it a valuable tool for simulating
complex chemical processes.

3.4.4 Effect of Perturbation Parameter �

Figure 5d illustrates how the perturbation parameter � influences the relative error. When � decreases, the relative error
rises, especially close to � = 0 . This is expected, as smaller values of � intensify the singular nature of the problem,
leading to sharper gradients and more pronounced boundary layers. The increase in error with decreasing � highlights
the challenges associated with solving SPBVPs using traditional numerical methods. However, the PINN's ability to
maintain relatively low errors across different values of � showcases its robustness and adaptability in handling
singularly perturbed problems in chemical reactor theory.

Remark 1 In this study, we have validated the PINN-based solutions by comparing them with corresponding analytical
solutions, which serve as reliable benchmarks for assessing accuracy. Since the selected problems are classical test
cases with known exact solutions, this direct comparison offers more rigorous validation than refer-encing numerical
results from the literature. However, we acknowledge that future work may include comparisons with existing
numerical methods to provide broader benchmarking and contextual relevance.

Remark 2 To validate the performance of our proposed cPINNs, we compare our solutions with exact analytical
solutions in three benchmark problems (see Sections 3.1, 3.3, and 3.4) and with the FEM in one problem (see Section
3.2). This provides both an accuracy benchmark and a quantitative comparison with a traditional numerical method,
demonstrating the effectiveness and generaliz-ability of cPINNs.

4. Conclusion

In this research, we demonstrated the effectiveness of causality-enhanced Physics-Informed Neural Networks (cPINNs)
in solving singular and singularly perturbed boundary value problems (SBVPs and SPBVPs) arising in chemical
systems, in-cluding isothermal gas spheres, electroactive polymer films, thermal explosions, and chemical reactor
theory. By integrating causal training and optimizing the pertur-bation parameter ϵ alongside network weights, our
approach achieved high accuracy and robustness across diverse benchmark problems. The L-BFGS optimizer and
adaptive loss weighting further improved convergence, particularly for stiff and mul-tiscale systems. Comparisons with
analytical solutions and FEM results validated the method’s reliability, while transfer learning reduced computational
costs for related tasks.

5. Limitations and Future Directions

Despite these advancements, several challenges and opportunities remain:

High-Dimensional Systems: The current framework focuses on 1D problems. Extending cPINNs to higher-dimensional
chemical systems (e.g., 3D reactor models) would require architectural adjustments to manage computational
complexity.

Generalizability: While cPINNs excel for specific SBVP/SPBVP classes, their performance on problems with
discontinuous or stochastic coefficients warrants further investigation.

Training Efficiency: The reliance on L-BFGS, though effective for smooth loss landscapes, may not scale efficiently to
larger networks. Hybrid optimizers (e.g., Adam-LBFGS) could be explored.

Experimental Validation: Future work should incorporate experimental data to bridge the gap between theoretical
predictions and real-world chemical systems.
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Uncertainty Quantification: Integrating Bayesian frameworks or ensemble methods could enhance cPINNs’ ability to
quantify prediction uncertainties, critical for safety-sensitive applications like combustion or reactor design.

This study bridges traditional numerical methods and modern machine learning, offering a scalable tool for complex
chemical BVPs. Future efforts will focus on addressing these limitations while expanding applications to coupled
multiphysics problems and industrial-scale simulations.
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