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Abstract

In this paper, we study the binomial edge ideals associated with three specific classes of graphs: the comb graph, the
cross-ladder graph, and the n-sunlet graph. These graph structures offer a rich interplay between combinatorics and
algebra, particularly in the context of Grobner basis theory. For each graph, we explicitly compute the reduced Grobner
basis of the corresponding binomial edge ideal with respect to a lexicographic monomial order. Our computations
involve a detailed analysis of admissible paths in the graphs, which play a central role in characterizing the generators
of the Grobner basis. Furthermore, we determine the initial ideals associated with each class and describe the families of
monomials that arise in their minimal generating sets. The construction of these Grobner bases not only offers insight
into the structural properties of the respective graphs but also enables potential applications in algebraic statistics,
computational algebra, and ideal theory. By classifying the admissible paths and systematically generating the Grobner
basis elements, our work provides a constructive and combinatorially motivated framework for understanding binomial
edge ideals. These results contribute to the growing body of literature exploring the connections between graph-
theoretic structures and algebraic invariants, and they open avenues for further investigations in more generalized or
complex graph families.
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2 Shafiq et al.

1. Introduction

Algebraic geometry is one of the important branches of modern mathematics that deals with the zeros of multivariable
polynomials. Commutative algebra is the main tool used to study algebraic geometry. The homological features of
current commutative algebra have become a recent and significant field of research, initiated by Melvin Hochster [1]. In
1975, Stanley used the concept of Cohen—Macaulay rings to prove the upper bound conjecture related to spheres. This
generated further new developments in commutative algebra, leading to the field known as combinatorial commutative
algebra, in which basic methods of commutative algebra are applied to study combinatorial objects such as simplicial
complexes and convex polytopes. Stanley was the first to systematically apply these ideas and procedures from
commutative algebra to discuss simplicial complexes through Stanley—Reisner rings, whose defining ideals consist of
square-free monomials. Since then, the study of square-free monomial ideals, from both combinatorial and algebraic
perspectives, has become an active area of research in commutative algebra [2]. In 1990, Villarreal associated
monomial ideals with graphs, introducing what is now known as the monomial edge ideal [3]. In 2010, a new
development in this subject appeared with the introduction of binomial edge ideals, independently by Herzog et al. [4]
and Ohtani [5].

In computational algebra, a reduced Grobner basis is a special kind of generating set of an ideal in a polynomial ring,
and solving a system of polynomials using the reduced Grobner basis is one of its remarkable applications. The Grobner
bases of binomial edge ideals were studied in [5] and [4]. In particular, those graphs were characterized for which the
generators of an ideal form a Grdbner basis with respect to the lexicographic order. These graphs are called closed
graphs. Crupi et al. [6] characterized all binomial edge ideals with quadratic Grobner bases with respect to the
lexicographic order. Badaini et al. [7] studied the universal Grobner basis of binomial edge ideals. Zafar et al. [8]
studied the initial ideals in degree 2 of binomial edge ideals for different classes of graphs. For more details on binomial
edge ideals, we refer to [9-18]. Recent developments have significantly advanced the study of binomial edge ideals
through various algebraic and combinatorial approaches. In particular, the regularity and depth of generalized binomial
edge ideals have been explored in [19,20], while regularity bounds and their sharpness across different graph classes
have been addressed in [21]. Structural properties such as the sequential Cohen—Macaulayness of binomial edge ideals
in cycles and wheels are examined in [22]. Moreover, the binomial edge ideals associated with Levi graphs from curve
arrangements are studied in [23], offering new perspectives on their algebraic behavior. These contributions
complement the foundational results and provide a broader context for analyzing Grobner bases and initial ideals of
binomial edge ideals in various graph structures.

Over the past few years, there has been growing interest in the algebraic and homological properties of binomial edge
ideals, particularly in relation to their Grobner bases and initial ideals. Jayanthan et al. [24] investigated partial Betti
splittings, providing a structured approach to analyzing minimal resolutions of binomial edge ideals. The regularity
behavior of powers of such ideals, especially in multipartite settings, has been studied in detail by Wang and Tang [25].
On a broader spectrum, Stelzer [26] examined reduced Grdobner bases arising from matrix Schubert varieties, revealing
combinatorial aspects relevant to binomial ideals. Bhardwaj and Saha [27] studied the regularity of Cohen—Macaulay
binomial edge ideals, identifying new classes with desirable homological properties. Further contributions by Lax et al.
[22] focused on the sequential Cohen—Macaulay property for specific graph families. Depth-related characteristics were
analyzed by Anuvinda et al. [20], who addressed the structural depth of generalized binomial edge ideals.
Complementing these studies, Kumar [28] investigated the Rees algebras and special fiber rings associated with
binomial edge ideals, offering insights into their blow-up algebras.

Motivated by these developments, the present work aims to construct generalized reduced Grobner bases and determine
initial ideals for various classes of graphs, thereby extending the current theoretical framework. Many graph classes
remain unexplored with respect to their Grobner bases and initial ideals. Most of the existing literature focuses on
simple graph families such as paths, cycles, and trees. However, graph structures with more complex connectivity, such
as comb graphs, cross-ladder graphs, and sunlet graphs, pose unique combinatorial challenges and offer potential
insights into the structural behavior of binomial edge ideals. Computing Grébner bases and initial ideals for such graphs
not only deepens our understanding of their algebraic invariants but also helps classify their homological properties,
such as regularity, projective dimension, and Cohen—Macaulayness.

2. Preliminaries

The notation used in the article will be introduced in this section. We will discuss some important definitions of
commutative algebra like monomial ideal, reduced Grobner basis and binomial edge ideal.

Definition 1 ([29]). A ring R is a non-empty set equipped with two binary operations + and x such that: (R,+) is an
abelian group, (R,x) is a semigroup, multiplication is distributive over addition from both sides:

ax(b+c)=axb+axc, (atb)xc=axctbxc, Va,b,cER.
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Example 1. Examples of rings include:

The set of integers Z, the set of rational numbers Q, the set of real numbers R, the set of all 2 x 2 matrices with real
entries.

Definition 2 ([29]). A ring of the form: R[x]={ |_,a,x* | a, ER/An>0}, is called a polynomial ring. If S=K[x1, X5, ..., X,],
then the ring in n-variables will be a polynomial ring.

Definition 3 ([29]). A surbing with the condition that rs €1 for every r€R and for all s€1 is called a ideal ISR.

Definition 4 ([29]). Consider the Xx;,...,x, be the indeterminates of the ring S=K[x;, ..., X,]. Then any product of the

C C C . . .. .
form: x|'xy> x;", is called a monomial, where the exponents always occur as positive integers. The set of all

monomials of S is denoted by mon (S).
Example 2 ([30]). The expression X3x3x] is an example of a monomial in the ring S=K[x;, X,, X3, X4].

Definition 5 ([30]). Let u=x'x5>" x;" Emon(S) then degree of u is denoted by Deg(u) and it is equal to sum of all
exponents, i.e. Deg(u)=c,+...+c,.

Definition 6 ([31]). A monomial ideal is an ideal I created by monomials such that ICS.
Example 3. The ideal I=( x3, x3X4, X3) is an example of a monomial ideal in the ring K[x,, X5, X3, X4].

2.1 Monomial Order

Definition 7 ([30]). A monomial ordering on K [x, ..., X,] is total order “<’> on mon(S) such that:
For all mon(S), 1<u.

uw<vw for all wE mon(S) if u, vEmon(S) such that u<v.

Definition 8 ([30]). (Pure lexicographic order):

Consider u=x{'x5>" x;" and V=xt1)1x12)2'" X" € mon(S)

then we say, u>p v

if in vector difference (ai, ay, ..., a,)-(b, by, ..., b)EZ">0 the left most non-zero entry is positive, where

Z"={(ay, ay, ..., ay)|a; EZ}.

Definition 9 ([30]). (Lexicographic order) Let u=x"'x2~ x™ and v =x"'x22~ x be monomials in S=K[x1, X, ..., X,].
grap 142 n 1 %2 n

We say that

u>lexva

if one of the following holds:
deg(u)>deg(v),
where deg(u)=a,+a,+...+a,,

or deg(u)=deg(v) and u>, v, where >, denotes the pure lexicographic order (compare the exponents from left to
right and take the first index where they differ).

This ordering is known as the degree lexicographic order.

Definition 10 ([31]). (Reverse lexicographic order) Consider u=x'x2 x* and v=x]"x%> x?" € mon(S) then we say
u>,.V if in vector difference (ay, a,, ..., a,)-(by, by, ..., b,) € Z">0 the right most non-zero entry is positive.

2.2 Grobner Basis

In this section we will discuss some those definitions of commutative algebra which are related to main result of our
theorems.

Definition 11 ([30]). Let 0#g €S then the set of all monomial in g is called support of g denoted by supp(g). We can
say that supp(g) S mon(S).

Definition 12 ([30]). To fix a monomial “<”on S, let S=K[x,X,,...,X,]. The initial monomial of g, represented by in.(g),
is the greatest monomial that appears in supp(g) with respect to “<”, if g#0. The leading term of g with respect to “<” is
the product c.in.(g), and the leading coefficient of g with respect to “<” is the coefficient ¢ of in.(g) in the expression of
g, shown by lc(g).

Definition 13 ([30]). Let I be an ideal of S and “<” be monomial order on S. The initial ideal of S with regard to “<” is
a monomial ideal generated by {in.(g):g€1-{0}}, denoted by in_(I). If =0, then in_(1)=<0>.
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Definition 14 ([30]). Let S=K[x, X», ..., X,] be a polynomial ring over a field K, and let < be a monomial order on S.
Let I C S be a non-zero ideal. A finite set of non-zero polynomials {f;,f,,....,f;} CI is called a Grobner basis of I with
respect to the monomial order < if

inc(I)=( inc(f)), inc(f,), ..., inc(f)) ,
where in.(f;) denotes the leading term of f; with respect to <, and in(I) denotes the initial ideal of I with respect to“<”.
The set of all Grobner basis of I with respect to “<” is denoted by G(I).

Definition 15 ([30]). Let [ is ideal of S and G(I)={fj, ..., f;} be a Grobner basis with respect to monomial order “<” on
S. Consequently, each Grdobner basis for I is a generator system for I. i.e. I=<fj, ..., f>.

Definition 16 ([30]). If “<” is monomial ordering on S and I is ideal of S and G(I)={f}, ..., f;} be Grdbner basis of I.
Next, under the “<”, G(I) is decreased Grobner basis of I if

(1) Ie(f=1 V fEG(I).
(2) For all s#0 no monomial in supp(gg) is divided by in(g;).
3. Binomial Edge Ideal
The significant findings on the binomial edge ideal of graphs are covered in this section. Let G be a simple graph with
the vertex set [n]={1, 2, ..., n} in all definitions.
Definition 17 ([2]). The monomial edge ideal is an ideal denoted by I such that I €S. Such that
Ig =<x.yp:{s, 0} EE(G)> (1)
where s<0.

Definition 18 ([4]). Let G=(V(G), E(Q)) be a finite simple graph with vertex set V(G)={1, 2, ..., n} and edge set E(G).
Let S=K[x1, ..., Xp, Y1, ---» ¥n] be the polynomial ring over a field K.

The binomial edge ideal of G, denoted by Jg, is the ideal in S defined as:
Jo = (fy=xiy;xyyi | (1.} €EG). i) ()

Definition 19 ([4]). (Admissible Path) Let G=(V(G), E(G)) be a simple graph and let i, j € V(G) with i<j under a fixed
monomial order.

A path P: i=ip—1i;—...—1,=] in G is called an admissible path from i to j if the following conditions are satisfied:
(1) The vertices iy, i, ..., i, are all distinct, i.e., i, #i; for all k#L.
(2) For each intermediate vertex i, with 1<k<r-1, one has either i, <i or i,>j (with respect to the given monomial order).

(3) For any subset{j,, ..., js} € {ij, ..., i..; }, the induced subgraph on the vertex set{i, j;, ..., js, j } does not contain a path
fromi to j other than P itself.

Definition 20 ([4]). (Associated Monomial) Let G be a simple graph with vertex set {1,2, ...,n}, and let J5 be the
binomial edge ideal in the polynomial ring S=K[xy, ..., X,, ¥1, ..., ¥o] over a field K.

Let P: i=ij—1;—...—1,=] be an admissible path in G with i<j. Then the associated monomial corresponding to the path
P is denoted by ap and is defined as:

W= 0%, 3)
If £;=X;y;-X;y; € J, then the product:
op*fi=0p(X;yj-XjY;), is called the binomial associated with the path P.

Definition 21 ([4]). Think about an admissible route. For i<j, P: i,—1;...—1,=j, then a monomial can be connected to
this path as:

U-P:( K> Xy )( i<i Yil) (4)

Theorem 1 ([4]). Suppose that G is a graph with vertices of n. An admissible path in G is then the set of binomials
GB(Kg)=U  <j{apfj|P}, which is reduced Grobner basis of K.

Theorem 2 ([4]). Let G be a graph with n vertices. Then the generating set of the initial ideal of the binomial edge ideal
Kg is given by

G(in(K3))=U {(xp XiYj | P is an admissible path in G}.
i<
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4. Binomial Edge Ideal of Comb Graph CO,, and Its Properties

We consider a comb graph G=CO,,, with m=2n vertices, where the vertex set is partitioned into two subsets: 1,2, ..., =

forming a path (the spine of the comb), and %H,...,m representing pendant vertices (the teeth), each connected t(z)
exactly one corresponding vertex on the spine. In this labeling, vertex i is adjacent to vertex i+1 for 1<i< %, and for each
1Si§%, the vertex i is connected to the vertex %Jri. The figure below illustrates the structure of this comb graph, where
dotted edges represent continuation in the pattern.

In the following theorem, reduced Grobner basis of K when G is comb graph CO,,. For this we will fix labeling as
given in Figure 1.

%+l %+2 %+3 n—1 n
L ] L ] [ ] [ ] [ ]
L ] ® e e B ®
1 2 3 X1 :

Figure 1. Comb graph CO,,with spine and pendant vertices.

Theorem 3. Let G be a comb graph CO,,, with n vertices. Then reduced Grobnerbasis of Kg is

3
GB(Kg)=V B; (5)
i=1

Where
B ={f;l{i, j} €E(G)},
i-0 ._n .
Bo={ vk fi%ﬂ-epflfg ,1<0<i-1},
_ 0+1 n n
and B3_{ k=0 Yk f%e’%+9+1‘ 15955'1, 15155-9}

Proof. To prove this theorem we find the all possible admissible paths in comb graph CO,, and then associated
monomials with these paths. If G is a comb graph with n vertices. Then we have the following cases:

Case 1. (fij| {1, j} EE(G)).

It is obvious to see that ap=1.

Hence, B;=Kg;.

Case 2. (2§i§§and j=§+i—e, where 1<0<i-1).
Clearly that Py: i—i-1—...— i-0—i-0+2,
where 1<0<i-1.

Now ap,= i::li»e Yi-

Hence, B2={0Lpefi%+

Lol2si<3, 10<i-1}.

Case 3. (i:§+e, j=§+9+1, 1<0< 2-1 and 15152_9).
Clearly, Py): 5+0—-0—0+1...—0+—>++0,
Where 1<6< %-1 and 1515%-9.

Now ap, ;= i:a Yk-

n n
Hence, By={ap,, fa.q 1, 4[150< 3-1, 1<1<7-0}

Now the theorem is concluded by using the above cases and Theorem 1.
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Example 4. Let G be a comb graph CO4 shown in Figure 2.

00

10 11

o @

3 1

Figure 2. Comb graph CO¢ with 12 vertices, showing the spine and pendant vertices.

The comb graph COyq is formed by attaching a pendant vertex to each vertex of a path graph P¢. This results in a graph
with 12 vertices and 11 edges. Its structure resembles a spine (the path) with evenly spaced teeth (pendants), hence the
name "comb graph.

Then we have following cases for GB(K¢o,).
(1) (2<i<6, j=6+i—0 and 1<6<i-1).

Opy= li(':li_e Yk, 1<0<i-1. Here, each yy is a variable from the polynomial ring S=K[x, ..., X{5, ¥1, ..., ¥12] corresponding
to the vertex k in the graph G.

G1={y1f2,7, Y2f3,g, }’2Y1f3,7, }’3f4,9, Y3Y2f4,sa Y3Y2Y1f4,7a}’4f5,1oa Y4Y3f5,9a Y4Y3YZf5,8:
Y4Y3Y2Y1f5,7a}’5f6,11, YSY4f6,IOn YSY4Y3f6,9: YSY4YSYZf6,Sa YSY4Y3Y2Y1f6,7}-
(2) (=610, j=6+1+6, 1<6<5, 1<1<6-0).

Opg 1~ i:; Vi 1<0 <5 and 1<1<6-6.

Go={y1¥2f28, Y1¥2¥37.9, Yay3¥2¥117.10: YsYay3yayifr i1, Yeysyaysyayifr,izs
Y3Y2f8,9, YZY3Y4f8,10: YSY4Y3Y2f8,1la Y6YSY4Y3YZf8,12a Y4Y3f9,1<)a Y3Y4Y5f9,11a Y3Y4YSYGf9,129
YsYafio i1, YsYaYetio iz, Ys¥efii iz}

(3) G3=Keo,-

Theorem 4. Let G be a comb graph CO,,, with n vertices.
3

Then, G(in.(Kg))=U G;,
i1

Where,

Gi={xy;l{i, j} €E(G)},

Gy={ ;e:i_l Yk Xi}%ﬁ_e‘zfif% ,1<0<i-1},
0+l n n
and Gy={ " yicXa,gynq [1<0<3-11<I<2-0}.

Proof. Proof is trivial by Theorem 2.
Example 5. Let G be a graph COg given in Figure 2.
Then we have following cases for G(in<(Kco,)):
(1) (2<i<6, j=6+i-0, 1<0<i-1).
Opy=
Gi={ y1X2¥7, Y2X3¥8, Y2Y1X3Y7.Y3X4Y9, Y3Y2X4Y8,Y3Y2Y1X4Y7, YaX5Y105

YaY3X5Y9, Y4Y3Y2X5Y8, YaY3Y2Y1X5Y7, Y5X6Y11> Y5Y4X6Y10o Y5Y4Y3X6Y9, Y5Y4Y3Y2X6Ys»

YsYaY3Y2Y1XeY7}-
(2) (i=610, j=6+1+0, 1<6<5, 1<1<6-0).

oY 10<i-1.

Op, = t‘e Vi, 1<0<5, 1<1<6-0 .
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Go={y1¥2X7Y8, Y1Y2Y3X7Y9, YaY3¥2Y1X7Y10-Y5YaY3Y2Y1X7Y 11, Y6Y5YaY3Y2Y1X7Y 125
Y3Y2X8Y9, Y2Y3YaX8Y10> Y5YaY3Y2X8Y11> Y6Y5Y4Y3Y2X8Y 12> Y4Y3X9Y10> Y3YaY5XoY11> Y3YaY5Y6X9Y12,
Y5YaX10Y11> Y5YaY6X10Y12:Y5Y6X11Y12} -

3) G3:Ic06o

5. Binomial Edge Ideal of Cross-Ladder Graph CL,, and Its Properties

In the following theorem, we will compute reduced Grobner basis of Kg when G is cross-ladder graph as labeled in
Figure 3.

t+1

3 5+2 3 +3 n—1 n
1 2 3 31 3

Figure 3. Cross-ladder graph CL,, with labeled vertices for Grobner basis computation.

5
Theorem 5. Let G be cross-ladder graph CL;, with n vertices. Then reduced Grobner basis of Kg is GB(Kg)=U B;
i=1

where,
B={f;j[{i,j} EE(G)},

. i-0 i-04+2-(1-1) ..n . .
B={ .. vk( L=i-29+§--1 Xy 1>2) fi%Li_e_lelfg,lSeSl-z, 1<I<i-0-1},

k-0 ..n . ..n
X @<l — <P<q- e -
okt X figep-113sis 5, 1<0<i-2, k=it+ =},

_ 1 n n
B,={ eo+1 Yk f%re,%rl | 15955 -2,9+2§1§5 },
and Bs={ 7 x, fiivger|1Si<3-2,1<0< -1}

Proof. To prove this theorem we need to find all the generalized admissible paths of the graph and their corresponding
monomials. For this we have following cases:

Case 1. (fij|{i, i} €EE(G)).

It is obvious to see that ap=1.

Hence, B;=Kg.

Case 2. (3<i<?, j=2+i-0-1, 1<0<i-2 and 1<I<i-6-1).
Clearly, Py j: i—i-1—...— i—9—>i—9+§-1’

Where 1<0<i-2 and 1<I<i—0-1.

_ 8 i-0+0--1+1
Now apy ;= 15 Yk k=Bl (X, 122).

Hence, By={ap, f,n,; o, 3<i<3, 1<6<i-2, 1<1<i-0-1}.
2

Case 3. (3515%, j=k—0-1 and 1<0< i-2, where k:i+§).

It is obvious to see that

Py 1: i—k—k-1...—k-0—k-0-1,

Where 1<6<i-2.

_ ko
Now Opy 1= g1 Xm-

Hence,

GIM, Vol. 2, No. 1, January 2026 https://gim.cultechpub.com/gim
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B; = {aPlei,k-e»l|3§i§%a1§9§i‘2}'

Case 4. (i=§+9, =§+l, 1<0< %-2 and 9+2§1§§).
It can be seen that

Py ! §+e—>e+1—>e+2...—>1_>1+§,

Where 1<0< 2-2, 0+2<I<.

Now Opy, = L:6+1 Y-

Hence, B,={ap,, f%e,%l|1595§ -2,0+2<I<2}.

Case 5. (1<i<3-2, j=i+6+1, 1<0< 2-i-1 and I=i+3).

It can be seen that

Pyt i—l—=l+1.. . —H0—i+0+1

Where 1<6< %-i-l and l=i+§.

Now Opy, = 1::61 Xy

Hence, Bs={ap, fi ;i |1<i<3-2, 1<0<2-i-1, I=i+3 ).

Now the theorem is concluded by using the above cases and Theorem 1.

Example 6. Let G be a cross-ladder graph CLs as shown in Figure 4.

| 2 3 I
Figure 4. Cross-ladder graph CLs with labeled vertices.
Then Kers= {X1Y2X2Y 1,X1Y6-X6Y 1,X2Y3-X3Y2,X2Y6-X6Y2,X2Y7-X7Y 2,X3Y4-X4Y3,X3Y7-X7Y3,X3 Y8 -X8Y3,X4Y5-X5Y4,X4Y3-X3Y 4

X4Y9-X9Y4,X5Y9 X9y 5:X5Y10-X10Y55X6Y7-X7Y 6:X7Y8-X8Y7,X8Y9-X0Y8:X9Y 10-X10¥9 } -
And
GB(KCL5):{Y4f5,8’ vaXsfs 7, YaxsXsfs 6, Yay3ls 7, Yaysyalse, v3 f4,7sY3X7f4,6’Y3YZf4,63 Y2f3,6s Xof5 8, XoXgfs 7, XgXgX7T5 6,
xgf47, X8X7f4,6a X7f3,6s Y2Y3f6,ss YZY3Y4f6,9s Y2Y3Y4Y5f6,10’ v3Yat7.9, Y3Y4¥st7 10, Y4YSf8,10’X6X7f1,3: XX7Xs ) 4,
XeX7XgXof] 5, X7XgT) 4, X7XgXof) 5, XgXof3 5}

5
Theorem 6. Let G be cross-ladder graph CL,,, with n vertices. Then G(in.(Kg)=U G;
i=1

Where,
Gi={xy;l{i,j} EE(G)},

_y i i-0-2-(1-1) ._n . .
Go={ 10 Ve (i) X 22)iyn, g BSi, 156022, 1<I<io6-1},
11:-:?(,1 X X;Yk-0-1 |3§i§§, 1<0<i-2, k=i+§ 3

1 . n n n
Ga={ g Yk xiy%+1|1=5+9, 1<6<2-2, 6+2<I<-},

and Gs={ X Xiyisgn 151532, 150<3-i-1).
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Proof. Proof is obvious by Theorem 2.

The admissible paths used in Theorems 5 and 6 are carefully constructed walks within the cross-ladder graph that
respect its combinatorial symmetry and connectivity. These paths—ranging from simple edge connections to structured
zig-zag and horizontal traversals—serve as the foundation for generating the reduced Grobner basis and its initial ideal.
Each family of binomials reflects a distinct class of admissible path, capturing the underlying geometry of the graph in
algebraic form and highlighting the deep interplay between combinatorics and computational algebra.

Example 7. Let G be a CLs graph shown in Figure 4.
Then,
KCL5: IX1Y2 XY 1,X1Y6-X6Y 1,X2Y3-X3Y2,X2 Y 6-X6Y2,X2Y7-X7Y2,X3Y4-X4Y3,X3Y7-X7Y3,X3 Y3 -X8 Y3,X4Y 5-X5Y4,X4 Y3 -X8 Y 4

X4Y9-X9Y4,X5Y9-X9Y5,X5Y10-X10Y5-X6Y7-X7Y 6,X7Y8-XgY7,X8Y9-X9Y8,X9¥ 10-X10Y9 } -
And,

G(ln<(KCL5): {Y4Xs5Ys, YaXsX5Y7, YaXsX7X5Y6,Y4Y3X5Y7, Y4Y3X7X5Y6,Y4Y3Y2X5Y6 Y3XaY7,Y3X7Xa Y65 Y3Y2XaY6> Y2X3Y65
X9X5Yg, X9XgX5Y7, X9XgX7X5Y6, XgX4Y7, X8X7X4Y6:X7X3Y6,Y2Y3X6Y8:Y2Y3Y4X6Y0,Y2Y3Y4Y5X6Y10,Y3Y4X7Y9,
Y3Y4Y5X7Y10,Y4Y5X8Y 10-X6X7X1Y3,X6X7X8X ] Y4,X6X7X8X0X ] Y5,X7 X312 Y4,X7XgX0X0 Y 5,X8XX3Y'5 } -

6. Binomial Edge Ideal of Sunlet Graph S, and Its Properties

In the following theorem, reduced Grobner basis of Kg when G is sunlet graph is given. For this first we will fix the
labeling of sunlet graph as shown in Figure 5.

Figure 5. Sunlet graph with labeled vertices for Grobner basis computation.

9
Theorem 7. Let G be n-sunlet graph S, with n vertices. Then reduced Grébner basis of Kg is: GB(Kg)=U B;(6),
-1

Where,
B={fj|{ij} EE(G)},

n

n
ERNER RIS S

i0 o )
By={ oYk fi,'2-1+1-6|2§155'1,1§9§1-1},
_y il n o .
Bt e k=lo+1 Xk fi,‘zle|2§1 <5-2,0<6<2-i-2)},
_y 5l n
Bs={ fgYifin,l1<0=5-2},
Be={ |, yifung|1<0<>-2}
k=1 Tk gl ==
Br={ ¥k f;ﬂ%eﬁieﬁg -13,

By={ g Vi fog2250=3-1, 041l

1 I
and B9:{ k=1 Yk ﬁ;;_e f5+

n n
11 0o [050=3-1-2, 15132},
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Proof. To prove the result we have to describe all possible admissible paths of n-sunlet graph G and corresponding

monomials ap of all i, j € V(G) with i<j. For this we have the following cases:

Case 1. (f;|{i, j} EE(G)).
It is obvious to see that ap=1.

Case 2. (i=1 and j=2-9, wher61595§-3),
It is obvious to see that Py: 1—>§—>§-1...—>§-9,

where 1595%—3.
Now, op,= E;enﬂ x for 1<0<2-3.
= 2

Case 3. (25155-1 and j=§+i—e, where 1<0<i-1).
It is obvious to see that

Py: ii-1—...—i-0—2+i -6,
where 1<6<i-1.
Now, op,= L’Ei_l yy for 1<0<i=-1.
Case 4. (25152-2 and j=§-e, where 0595%-1-2).
It can be seen that
Py: ioi-l>... > l—>t st l—.. -
2 2 2

where 0595%4—2.
Now, ap,= Lll Yk E%H xy for O§9§§—i—2.
Case 5. (i=§ and j=n-0, where 1<0< 2-2).

n

Clearly, Py: %—»E—l—n . .—>§-6—>n—9,

Where 1<6< %-2.

Now, ap= E;;_eykfor 1<0< 5-2.

Case 6. (i=§ andj=%+9, where 1<6< %-2).
It is obvious to see that

Py: - —1—...—0—=+0,

2 2
Where 1<6< %-2,

_ 6 n

NOW’ U'PG_ k=1 Yk for 1595 5'2.
Case 7. (i=7+1 and j=+6, where 2<6< -1).
It is clearly that Py: %+1—>1—>...—>9—>%+9,
Where 2<6< %-1.

Now, ap,= 12=1 yy for 2<0< %-1.

https://gim.cultechpub.com/gim
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Case 8. (i=3+0, j=3 +1, where 2<6< 7-1 and 6+1<I<7).
It is obvious to see that:

Py 1 3+0—0— .. =121,

Where 2<6< %-1 and 6+1<I Sg.

Now, op,= ]l(:e vy for 2<0< g—l and 9+1§l§§.

Case 9. (i=§+l, j=n-0, where 1<I< %-2 and 0565%-1-2).
It is obvious to see that:

Py 1 §+1—>1—>1 -1—>...—>1—>§—>§—1—>...—>%-9—>n—9,

Where 1<I< %-2 and 0595%—1—2.

n

ﬁ;;-e yy for ISISE -2 and 0595% -1-2.

_ 1
Now, Upg, ™ k=1

Now the theorem is concluded by using the above cases and Theorem 1.

Example 8. Consider the sunlet graph S5 shown in Figure 6.

Figure 6. Sunlet graph S5 with labeled vertices.
If

11

K55: {X1Y2-X0Y 1,X1Y6-X6Y 1,X1Y5-X5Y 1,X2Y3-X3Y2,X2Y7-X7Y2,X3Y4-X4Y 3,X3Y3-X8Y3,X4Y5-X5Y4,X4Y9X0Y4-X5Y 10-X10Y 5 } -

Then we have following cases for GB(K;,):
(1) (i=1, j=5-8, where 1<6<2).

o= izs»e xy for 1<0<2.

Op
Hence, G;={xsf) 4,X5X41] 3}.

(2) (2<i<4, j=5+i-0 and 1<0<i-1).
li;i-e yi for 1< 6 <i-1.

U.pez

Hence, G,={y f3,7a}’1 f2,(n}’2}’1 f3,69Y3 f4,8a}’3}’2f4,7,}’3}’2}’1 f4,6 3.

(3) (2<i<3, j=5-0 and 0<0<3-i ).

i-1

5 .
= <0<3-
9 k=1Yk k=6- Xk for 0<0<3-i.

Op
Hence, G3={f3 5y1,4y1X5,13 5y1¥2}-
(4) (i=5, j=10-6, where 1<0<3 ).

ap,= izs-e yi for 1<0<3.

0

Hence, G4={yafs9,y4y315 8,y4y3yf57}.

GIM, Vol. 2, No. 1, January 2026
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(5) (i=5, j=5+0, where 1<0<3) .

ap,= 1?:1 yy for 1<0<3.

0
Hence, Gs={yf56,y1y2157,y1Y3Y2f58} -
(6) (=6, j=5+0, where 2<0<4 ).

U.pez

Hence, G4= {YIYZf(v,%YIYZY3f6,8=YIY3YZY4f6,9}~
(7) =5+1, i=5+8, where 2<0<4, 6+1<I<5).

1?:1 yyfor 2<6<4.

Opy~ Lze yk for 2<0<4 and 0+1<1 <5.

0
Hence, G7={y,y3 f7,8’Y4YZY3f7,9sYSY3YZY4f7,IOsY3Y4f8,9aYSY3Y4f8,IOsYSY4f9,10}~

(8) (i =5+1, j=10-0, where 0<0<3-1, 1<I<3).

1

0= 1ol s Yk for 0<0<3-1, 1<I<3.

Op

Hence, G8:{YIYSf6,10aY1Y5Y4f6,9:YIYSY4Y3f6,8aYZYIYSf7,10:YZYIYSY4f7,9aYIYZY3YSf8,10}~

(9)Go=Ksg;.

Theorem 8. Let G be sunlet graph S, with n vertices.
9

Then: G(in(Kg)=U 1G1(7),

Where

Gr=txiyl{id} € EG} Gt frg xxiyagl10<3 -3},
Gy={ \Jh Yiexiyn,i25iS 31150501},

Ga={ Vi g X XiYngl25iS3 2,003 -2,

Gs={ %_1‘_9 Yk X;Yn»6| 1595%'2}3

Go={ oy YKoy, 10352},

Gr={ oy YieXa, yn, 20531},

Gy={ g Vi Xp.gyn, [250<3-1,6+1<1<7 3,

and Go={ |y, ﬁ%_ex%ﬂyn_e|05egg-1-2,1§1§§-z}.

Proof. Proof is trivial by Theorem 2.
Example 9. Consider the sunlet graph S5 shown in Figure 6.
If

Shafiq et al.

K55: {X1Y2-X0Y 1,X1Y6-X6Y 1,X1Y5-X5Y 1,X2Y3-X3Y2,X2Y7-X7Y2,X3Y4-X4Y 3,X3Y3-X8Y3,X4Y 5 -X5Y4,X4Y9X0Y4-X5Y 10-X10Y5 } -

Then we have following cases to for G(in-(Ks;)):
(1) (i=1, j=5-8, where1<0<2).

0= i=6-e xj for1<0<2.

Op,
Hence, G={XsX|y4,X5X4X1Y3}.
(2) (2<i<4, j=5+i-0 and 1<6<i-1).
ap,= 1L viforl<O<i-1.

Hence, Gy={y2X3Y7,¥1X2¥6,Y2Y1X3Y6,Y3X4Y8,Y3Y2X4Y7,Y3Y2Y 1X4Y6 } -

(3) (2<0<3, where 1<0<2).

https://gim.cultechpub.com/gim
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x;for0<6<3-i.

_ il 5
APy~ =1 Vk =69

Hence, G3={x,51, X2V4V1X5,%3V5V1V2} -
(4) (i=5, j=10-0, where1<0<3 ).

Op,= i:&e vy for1<6<3.

0

Hence, G4={y4X5Y9,Y4Y3X5Y3,Y4Y3Y2X5Y7} -
(5) (i=5, j=5+6, where 1<0<3).

ap,= 12=1 yy for 1<0<3.

0

Hence, Gs={y|Xs5Y6,Y1Y2X5Y7,Y1Y3Y2X5Y3 } -
(6) (=6, j=5+6, where 2<6<4).

Op,= 12=1 yy for 2<0<4.

0

Hence, Ge=1{y1Y2X6Y7,Y1Y2Y3X6Y8:Y1Y3Y2Y4X6Y0 } -
(7) =51, i=5+8 ,where 2<0<4, 6+1<I<5) .

Opy ™ L:e yi for 2<6<4 and 6+1<I<5.

0

Hence, G7={y2Y3X7Y3,Y4Y2Y3X7Y9,¥5Y3Y2Y4X7Y10-Y3Y4X8Y0-Y5Y3Y4X8Y 10,Y5Y4X0Y 10 -
(8) (i=5+1, j=10-0, where 0<0<3-l, 1<1<3).

1

b= 1ol s Yk for 0<0<3-1, 1<I<3.

Op

Hence, Gs={Y1Y5X6Y105Y1Y5Y4X6Y0,Y1Y5Y4Y3X6Y8:Y2Y1Y5X7Y10-Y2Y1Y5Y4X7Y9,Y1Y2Y3Y5X8Y 10} -
(9) Go=Is;.

7. Discussion and Conclusion

In this work, we derived explicit reduced Grobner bases and initial ideals of binomial edge ideals for three structured
graph classes: comb graphs, cross-ladder graphs, and sunlet graphs. Our computations were performed under a fixed
monomial order using the framework of admissible paths, yielding constructive formulas for each class.

The results highlight the growing complexity of Grobner basis structures as the graphs transition from simple paths (in
the comb graph) to intricate hybrid connections (in the cross-ladder and sunlet graphs). Particularly, the recurrence
patterns in the associated monomials and binomials reflect the layered nature of these graphs.

Moreover, by systematically categorizing the admissible paths, we revealed how algebraic generators encode specific
subgraph configurations. This connection offers future potential in characterizing the algebraic properties (like
regularity or Betti numbers) directly from graph structure.

Future work can extend this investigation to disconnected graphs, graphs with loops, or weighted versions. It would also
be valuable to explore applications of these results in conditional independence models in algebraic statistics, where
binomial edge ideals frequently arise.
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