A Novel Approach to Sports Analytics Using Neutrosophic Fermatean Soft Plithogenic Sets: Application to Football Team Performance Evaluation

Authors

  • Narmada Devi Rathinam Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Tamil Nadu, India Author
  • Yamini Parthiban Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Tamil Nadu, India Author

DOI:

https://doi.org/10.64229/5dege109

Keywords:

Neutrosophic set, Neutrosophic Fermatean set, Soft Set Theory, Neutrosophic Fermatean Soft set, Neutrosophic Fermatean Soft Plithogenic set, Neutrosophic Fermatean Soft Plithogenic matrix

Abstract

This work presents and elaborates the new notion of Neutrosophic Fermatean Soft Plithogenic Sets (NFSP-sets), which provides a new sophisticated mathematical framework of managing uncertainty, indeterminacy, and contradiction in decision-making systems. The suggested framework is a systematic study of the fundamental operations, algebraic properties, and laws of interaction of NFSP-sets. In order to illustrate its usefulness in practice, an elaborate application is implemented to assess and rank football teams using actual match statistics. The performance data of several games is combined with the AND-PRODUCT rule based on Neutrosophic Fermatean Soft Plithogenic matrices, which provides an accurate and comprehensive evaluation of the performance of a team in terms of teamwork, defense, and scoring efficiency. Numerical tests also prove that the given approach is more accurate and reliable than the traditional ranking models. Altogether, the results confirm the strength and relevance of NFSP-sets in sports analytics, and they may become a strong decision-support tool of systematic and evidence-based performance analysis.

References

[1]Anders H. The Foundation of Probability Theory by Pascal and Fermat in 1654. https://www.researchgate.net/publication/314047577_The_Foundation_of_Probability_Theory_by_Pascal_and_Fermat_in_1654 (accessed on 02 May 2025) .

[2]Zadeh LA. Fuzzy sets. Information and Control, 1965, 8(3), 338-353. DOI: 10.1016/S0019-9958(65)90241-X

[3]Zadeh LA. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1978, 1(1), 3-28. DOI: 10.1016/0165-0114(78)90029-5

[4]Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986, 20(1), 87-96.

[5]Bustince H, Burillo P. Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1995, 74(2), 237-244. DOI: 10.1016/0165-0114(94)00343-6

[6]Molodtsov D. Soft set theory—first results. Computers & Mathematics with Applications, 1999, 37(4-5), 19-31. DOI: 10.1016/S0898-1221(99)00056-5

[7]Smarandache F. A unifying field in logics: neutrosophic logic. Philosophy, American Research Press, 1999, 1-141.

[8]Maji PK, Biswas R, Roy AR. Soft set theory. Computers & Mathematics with Applications, 2003, 45(4-5), 555-562. DOI:10.1016/S0898-1221(03)00016-6

[9]Wang H, Madiraju P, Zhang Y, Sunderraman R. Interval neutrosophic sets. arxiv preprint math/0409113, 2004, 1-16. DOI:10.48550/arXiv.math/0409113

[10]Smarandache F. Neutrosophic set—a generalization of the intuitionistic fuzzy set. International Journal of Pure and Applied Mathematics, 2005, 24(3), 287.

[11]Bhowmik M, Pal M. Intuitionistic neutrosophic set. Journal of Information and Computing Science, 2009, 4(2), 142-152.

[12]Salama AA, Alblowi SA. Neutrosophic set and neutrosophic topological spaces. IOSR Journal of Mathematics, 2012, 3(4), 31-35. DOI: 10.9790/5728-0343135

[13]Atanassov KT. On intuitionistic fuzzy sets theory. Springer, 2012.

[14]Ye J. Another form of correlation coefficient between single valued neutrosophic sets and its multiple attribute decision-making method. Neutrosophic Sets and Systems, 2013, 1(1), 8-12. DOI: 10.5281/zenodo.571265

[15]Broumi S. Generalized neutrosophic soft set. International Journal of Computer Science, Engineering and Information Technology, 2013, 3(2), 17-30. DOI: 10.5121/ijcseit.2013.3202

[16]Salama AA, Smarandache F, Kromov V. Neutrosophic closed set and neutrosophic continuous functions. Neutrosophic Sets and Systems, 2014, 4, 4-8. DOI: 10.5281/zenodo.30213

[17]Karaaslan F. Neutrosophic soft sets with applications in decision making. International Journal of Information Science and Intelligent System, 2015, 4(2), 1-20. DOI: 10.48550/arXiv.1405.7964

[18]Mondal K, Pramanik S. Neutrosophic tangent similarity measure and its application to multiple attribute decision making. Neutrosophic Sets and Systems, 2015, 9, 80-87. DOI: 10.5281/zenodo.571578

[19]Pramanik S, Mondal K. Cotangent similarity measure of rough neutrosophic sets and its application to medical diagnosis. Journal of New Theory, 2015, (4), 90-102.

[20]Ye J. Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artificial Intelligence in Medicine, 2015, 63(3), 171-179. DOI: 10.1016/j.artmed.2014.12.007

[21]Al-Omeri W, Smarandache F. New neutrosophic sets via neutrosophic topological spaces. Neutrosophic Operational Research, 2017, 1, 189-208.

[22]Smarandache F. Neutrosophic overset, neutrosophic underset, and neutrosophic offset. similarly for neutrosophic over-/under-/off-logic, probability, and statistics. Brussels: Pons Editions, 2016.

[23]Bera T, Mahapatra NK. Introduction to neutrosophic soft topological space. Opsearch, 2017, 54(4), 841-867. DOI: 10.1007/s12597-017-0308-7

[24]Dhavaseelan R, Jafari S. Generalized neutrosophic closed sets. New Trends in Neutrosophic Theory and Applications, 2017, 2, 261-274.

[25]Dhavaseelan R, Devi RN, Jafari S, Imran QH. Neutrosophic alpha m-continuity. Neutrosophic Sets and Systems, 2019, 27, 171-179. DOI: 10.5281/zenodo.3275577

[26]Jansi R, Mohana K, Smarandache F. Correlation measure for Pythagorean neutrosophic sets with T and F as dependent neutrosophic components. Neutrosophic Sets and Systems, 2019, 30, 202-212.

[27]Jayaparthasarathy G, Flower VL, Dasan MA. Neutrosophic supra topological applications in data mining process. Neutrosophic Sets and Systems, 2019, 27, 80-97.

[28]Jha S, Kumar R, Son LH, Chatterjee JM, Khari M, Yadav N, et al. Neutrosophic soft set decision making for stock trending analysis. Evolving Systems, 2019, 10, 621-627. DOI: 10.1007/s12530-018-9247-7

[29]Mehmood A, Nadeem F, Nordo G, Zamir M, Park C, Kalsoom H, et al. Generalized neutrosophic separation axioms in neutrosophic soft topological spaces. Neutrosophic Sets and Systems, 2020, 32, 38-51. DOI: 10.5281/zenodo.3723601

[30]Al-Hamido RK. A new approach of neutrosophic topological space. International Journal of Neutrosophic Science, 2020, 7(1), 55-61. DOI: 10.54216/IJNS.070105

[31]Madhumathi T, Nirmala Irudayam F. Neutrosophic orbit topological spaces. Trends in Sciences, 2021, 18(24), 1443-1443. DOI: 10.48048/tis.2021.1443

[32]Ozturk TY, Benek A, Ozkan A. Neutrosophic soft compact spaces. Afrika Matematika, 2021, 32, 301-316. DOI: 10.1007/s13370-020-00827-9

[33]Das S. Neutrosophic supra simply open set and neutrosophic supra simply compact space. Neutrosophic Sets and Systems, 2021, 43, 105.

[34]Atanassov K. Intuitionistic fuzzy modal topological structure. Mathematics, 2022, 10(18), 3313. DOI: 10.3390/math10183313

[35]Sasikala D, Deepa M. A new perspective of neutrosophic hyperconnected spaces. Neutrosophic Sets and Systems, 2022, 51, 619-632.

[36]Dey S, Ray GC. Separation axioms in neutrosophic topological spaces. Neutrosophic Systems with Applications, 2023, 2, 38-54. DOI: 10.5281/zenodo.8195851

[37]Devi RN, Yamini P. Enhancing decision-making for parents: A neutrosophic pythagorean plithogenic hypersoft set approach to school selection with TOPSIS method. Multi-Criteria Decision Making Models and Techniques: Neutrosophic Approaches. IGI Global, 2025, 1-22. DOI: 10.4018/979-8-3693-2085-3.ch001

[38]Devi RN, Parthiban Y. Neutrosophic over soft generalized continuous functions: A paradigm shift in best invention competition machine selection. TWMS Journal of Applied and Engineering Mathematics, 2025, 15 (7), 1810-1823.

[39]Saeed M, Shafique I, Gunerhan H. Fundamentals of fermatean neutrosophic soft set with application in decision making problem. International Journal of Mathematics, Statistics, and Computer Science, 2025, 3, 294-312. DOI: 10.59543/ijmscs.v3i.10625

[40]Mudrić-Staniškovski L, Djurovic L, Stojanović N. Energy of a fuzzy soft set and its application in decision-making. Iranian Journal of Fuzzy Systems, 2024, 21(2), 35-49. DOI: 10.22111/ijfs.2024.46797.8243

[41]Stojanović N, Laković M. Q [ε]-Fuzzy sets. Journal of the Korean Society for Industrial and Applied Mathematics, 2024, 28(4), 303-318. DOI: 10.12941/JKSIAM.2024.28.303

[42]Djurović L, Laković M, Stojanović N. Decision-making algorithm based on the energy of interval-valued fuzzy soft sets. arXiv preprint arXiv:2405.15801, 2024. DOI: 10.48550/arXiv.2405.15801

[43]Alcantud JCR, Stojanović N, Djurović L, Laković M. Decision-making and clustering algorithms based on the scored-energy of hesitant fuzzy soft sets. International Journal of Fuzzy Systems, 2025, 1-15. DOI: 10.1007/s40815-024-01964-0

[44]Stojanović N, Laković M, Djurović L. Decision-making algorithm based on the energy of interval-valued hesitant fuzzy soft sets. Neural Computing and Applications, 2025, 37(16), 9821-9841. DOI: 10.1007/s00521-025-11107-7

[45]Mudrić-Staniškovski L, Spasenić I, Tadić D, Stojanović N. Evaluation and selection of cloud platforms in a fuzzy environment. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology IOS Press, 2025, 18758967251360816. DOI: 10.1177/18758967251360816

[46]Svičević M, Vučićević N, Andrić F, Stojanović N. Analyzing decision‐making processes using the energy of bipolar neutrosophic soft sets. International Journal of Intelligent Systems, 2025, (1), 1820548. DOI: 10.1155/int/1820548

[47]Stojanović N, Vučićević N, Dalkılıç O. Decision-making algorithm based on the scored-energy of neutrosophic soft sets. Afrika Matematika, 2025, 36(3), 144. DOI: /10.1007/s13370-025-01366-x

Downloads

Published

2025-11-28

Issue

Section

Articles